California May Yet Save Diablo Canyon

  • California May Yet Save Diablo Canyon with Federal Credits
  • Nuclear Power for Ships Gets New Ideas
  • Japan’s PM Fumio Kishida – Nuclear Energy Needed Now
  • UK May Build Seven Nuclear Plants By 2050, Probably More
  • UK in Talks With South Korea to Build Nuclear Power Plants
  • DARPA Seeks Proposals for Nuclear Thermal Rockets
  • Purdue and Duke Energy Plan Study for Campus Nuclear Reactor

California May Yet Save Diablo Canyon with Federal Credits

(NucNet contributed to this report) California Governor Gavin News, after several weeks of hemming and hawing over the Biden’s administration’s Bipartisan Infrastructure Law, said last week he would now apply for federal credits to help keep the Diablo Canyon Nuclear Plant open.

diablo canyon

The Federal credits are part of a multi-billion dollar program to save the nation’s nuclear power plants from rapacious market forces. California governor Gavin Newsom said he is open to extending production of electricity and desalination at Pacific Gas & Electric’s two-unit Diablo Canyon nuclear power station, the only nuclear station in the state, beyond its planned August 2025 retirement.

The plant, commissioned in the mid-1980s, is the largest source of electricity in California. The two 1100 MWe reactors produce about 8.6% of total California generation and 23% of carbon-free generation. The reactors supply the electrical needs of more than 3 million people.

The complex history behind PG&E’s decision in 2016 to close the plant in 2025 is based on the strident anti-nuclear politics of California’s environmental groups and as well as the influence of national groups like NRDC.

While the groups claim the power provided by the closed plant could be replaced by a combination of natural gas and renewables, experts in the public utilities field pointed out that the stability of the entire California grid would be at risk under such an arrangement. It would also lead to increased CO2 from new gas plants. Similar arguments were advanced to close the twin 100 MWe reactors at Indian Point in New York, but subsequent history has not borne them out.

Governor Newsom also expressed concern about the cost of new solar energy projects based on US tariffs imposed on Chinese components for the renewable power systems.

Until now efforts by a broad coalition of civic and pro-nuclear groups made little headway in their efforts to save the plant.  However, once the Biden administration made dealing with climate change a priority and convinced Congress to put real money on the table to back his policy agenda, the possibility of saving the reactors took on new urgency.

MIT / Stanford Study

A MIT/Stanford University study released late last year  made the case for keeping the plant open until 2035. A report from researchers at MIT and Stanford states that keeping Diablo Canyon running until 2035 would reduce the state’s carbon emissions from electricity generation by 11% every year, save the state a cumulative $2.6 billion, and improve the reliability of the grid.

The study said delaying the shutdown could provide multiple benefits by simultaneously helping to stabilize the state’s electric grid, provide desalinated water to supplement the area’s chronic water shortages, and provide carbon-free hydrogen fuel for transportation.

Steven Chu, energy secretary in the Obama administration, endorsed the study and said:

“We are not in a position in the near-term future to go to 100% renewable energy, and there will be times when the wind doesn’t blow, the sun doesn’t shine and we will need some power that we can turn on and dispatch at will, and that leaves two choices: fossil fuel or nuclear”

He noted that countries that have shut down their nuclear plants have ended up using more fossil fuels. He also called the decision to shutdown the plant “distressing” and said “Nuclear power is something we should reconsider, and we should ask PG&E to reconsider.”

Earlier this year nearly 80 scientists, academics and entrepreneurs from a range of disciplines, including former US energy secretary Steven Chu, sent a letter to Governor  Newsom asking him to delay the closure of Diablo Canyon.

“The threat of climate change is too real and too pressing to leap before we look. Considering our climate crisis, closing the plant is not only irresponsible, the consequences could be catastrophic. We are in a rush to decarbonize and hopefully save our planet from the worsening effects of climate change. We categorically believe that shutting down Diablo Canyon in 2025 is at odds with this goal. It will increase greenhouse gas emissions, air pollution, and make reaching the goal of 100 percent clean electricity by 2045 much harder and more expensive.”

DOE’s Plan to Save Nuclear Reactors at Risk of Shutting Down

The U.S. Department of Energy (DOE) announced plans last month to seek applications and sealed bid submissions under the $6 billion Civil Nuclear Credit Program (CNC) to support the continued operation of U.S. nuclear reactors. The guidance directs owners or operators of nuclear power reactors that are expected to shut down due to economic circumstances on how to apply for funding to avoid premature closure. This includes instructions on formulating and submitting sealed bids for allocation of credits.

This critical investment, made possible by President Biden’s Bipartisan Infrastructure Law, will help avoid premature retirements of reactors across the country due to financial hardship, preserve thousands of good-paying clean energy jobs to sustain local economies and protect our supply of carbon-free electricity generation.

“U.S. nuclear power plants contribute more than half of our carbon-free electricity, and President Biden is committed to keeping these plants active to reach our clean energy goals,” said U.S. Secretary of Energy Jennifer M. Granholm.

What’s Next?

It’s not clear if Governor Newsom gets the funds whether the anti-nuclear groups that are parties to the 2016 closure deal will file lawsuits to prevent the money from being spent to save the reactors. Also, assuming that the money does become available, PG&E will likely have to reopen its license renewal efforts with the NRC. In the past, the NRC has allowed nuclear utilities to continue to operate under their current license if deliberations for a 20-year extension are taking place.

Reuters reported that last November, a spokesperson for the California Public Utilities Commission (PUC) said that renewal would require upgrades to help the plant withstand earthquakes and to make changes to its cooling systems. Those investments would likely cost more than $1 billion. It’s not clear whether these requirements are just political tactics to keep the plant on a trajectory to close or real issues.

& & &

Nuclear Power for Ships Gets New Ideas

Core Power to Offer Nuclear Powered Floating Desalination Ship

(Ship & Bunker News) Nuclear reactor firm Core Power has proposed using a nuclear-powered ship as a mobile desalination plant. The firm said it is designing systems for deploying advanced reactors offshore to produce vast quantities of fresh clean water for communities in need, without polluting the environment.

The company has developed a ship design with an 80 MWe molten salt reactor to be installed in a ship in that could provide millions of gallons of drinking water a day.

core power reactor concept

“Floating desalination will allow these facilities to be flexible overcoming the low utilization rates of many existing facilities, as well as allow a decrease in build times due to a greater use of modularized construction techniques in shipyards,” the company said in the statement.

Norwegian Firm Sets Plans for Ship with Thorium Fueled MSR

Nuclear power is increasingly being considered as a means for parts of the shipping industry to eliminate their carbon emissions.

Norwegian maritime solutions company, Ulstein, has unveiled a new vessel concept that holds the potential to deliver zero-emission cruises and other ocean industry applications, the company said in a press release.

While MSRs have been proposed to be used to produce power on land, they haven’t been used at sea before, and Ulstein has designed a concept vessel, Thor, to serve as a blueprint for making future electric vessels self-sufficient.

ulstein nuclear rescue

The nuclear powered ship is being proposed for two missions – rescue at sea and oceanographic research. The company plans to build four ships with the design.

For its rescue missions, Thor will be equipped with helicopter pads, autonomous surface vehicles, airborne drones, cranes, workboats, rescue booms, and firefighting equipment. To serve its research functions, it will be equipped with laboratory spaces as well as a lecture lounge.

Ulstein claims that Thor’s charging capacity has been scaled up to meet the needs of up to four expedition cruises at once, while also being self-sufficient for its own power needs.

For demonstration purposes, Ulstein has also developed an Ice Class expedition vessel called SIF that will be powered by next-generation batteries. The 328 feet (100 m) long expedition vessel has a capacity of 160 members, with 80 members of the crew and 80 passengers and the capability to tread the Arctic and Antarctic waters.

The proposed MSR would use thorium dissolved in molten salt, and the chain reaction in the reactor would be used to produce steam, which is then used to drive turbines and produce electricity without any emissions.

“MSRs have enormous potential for enabling clean shipping. There is so much uncertainty over future fuels, but here we have an abundant energy source that, with the right approach, can be safe, much more efficient, cheaper, with a smaller environmental footprint than any existing alternative,” noted Jan Emblemsvåg, an expert in the field of thorium and nuclear power generation and a professor at the Norwegian University of Science and Technology.

& & &

Japan’s PM Fumio Kishida – Nuclear Energy Needed Now

(Wire Services) Japan’s Prime Minister Fumio Kishida said that the nation will use nuclear reactors to help reduce its own and other countries’ dependence on Russian energy especially for diesel fuel.

SONY DSCHe said Japan would address the “vulnerability of our own energy self-sufficiency” by broadening where it buys energy from, promoting renewables and using nuclear power to diversify its sources of generation.

“We will utilize nuclear reactors with safety assurances to contribute to worldwide reduction of dependence on Russian energy,” Kishida told an investor audience in London.

“Restarting just one existing nuclear reactor would have the same effect as supplying 1 million tonnes of new LNG (Liquified Natural Gas) per year to the global market.”

Facing elections in July and rising energy price, Kishida said that nuclear energy would be part of the country’s future energy policy. While some communities which benefit from the payrolls of worker at operating plants support restarts, opposition is fierce to others, like at Tokyo Electric Power Co.’s (TEPCO) Kashiwazaki-Kariwa plant with a net capacity of 7,965MW.

The plant management has repeatedly run into trouble with its rebuilding efforts related to public confidence due to muffled reports about minor incidents involving fires and mishandling of low level waste. The public, more or less fixated on the Fukushima disaster, is unnerved by reports of even the slightest hiccup in operations. Local politicians in the Niigata Prefecture have made entire careers bashing TEPCO for its ham handed communications and less than stellar efforts to convince locals to support restart of the site’s seven BWRs.

But a majority of Japan’s public and businesses want the government to restart nuclear reactors to address energy security, with the Ukraine crisis and higher energy costs having added momentum to that shift in opinion. Several lawsuits to stop the restart of other nuclear plants have been dismissed by the courts. However, stringent government regulation of the plants that have not yet reopened, despite completing safety upgrades related to the Fukushima crisis, remain a challenge for Japan’s nuclear utilities.

& & &

UK May Build Seven Nuclear Plants By 2050, Probably More

Echoing a boast by UK PM Boris Johnson that the nation would address its energy crisis by building one reactor a year, Business and Energy Secretary Kwasi Kwarteng told The Sunday Telegraph, “If we fast forward to 2050, there is a world where we have six or seven (nuclear) sites in the UK. That isn’t going to happen in the next two years. But it’s definitely something that we can aspire to.”

The term “aspirational” is probably undershoots what could be possible.  The UK is building twin 1700 MWe EPRs at the Hinkley Point C site and is moving along with plans to build two similar units at the Sizewell C site. All four reactors have the potential to be in revenue service by 2030.

Rolls-Royce is promoting its business case to build a fleet of 16 470 MWe PWRs over the next two decades. The firm recently submitted its PWR design to the UK Office of Nuclear Regulation for the generic design review, which usually takes up to four years, but the firm says it thinks it can complete it faster, possibly in about two years. The company did not provide details. In any case, by 2026 at the latest the firm will be able to break ground for the first two units. Assuming its supply chain and production capabilities can keep up, the entire fleet could be in revenue service by 2040.

South Korea has recently expressed interest in entering the UK nuclear market related to other sites, which do not have current plans for new builds, such as Moorside, Wylfa, Oldbury, or Bradwell.

While the UK is less dependent on Russian energy than other European countries such as Germany, Kwarteng cited the need to avoid such imports.

“The idea is that, given what (Russian President Vladimir) Putin is doing, we don’t want to live in a world where we’re dependent on Russian hydrocarbons,” he said.

Britain plans to phase out Russian oil imports by the end of the year. Why the nation is even importing Russian oil given its North Sea holdings is a mystery.

& & &

UK in Talks With South Korea to Build Nuclear Power Plants

The U.K. reported to be in talks with South Korea about building nuclear power plants in Britain to help the government’s efforts to replace its aging fleet of first generation reactors. Ten of the U.K.’s existing 11 reactors are due to close by the end of the decade.

Business Secretary Kwasi Kwarteng is reported to have met with state-owned Korea Electric Power Corp. to discuss participation in future projects.  No joint communique resulted from the ministerial meeting.

The discussions, first reported by the Daily Telegraph, are intended to revive efforts to build new full size nuclear power plants at Wylfa, Oldbury, Moorside, and Bradwell sites. All of them at one time had vendors lined up to build new reactors and all of them lack a vendor due to the absence of firm government support for financing and rate guarantee.

The Bradwell site, which was to be built by Chinese state-owned nuclear firms, is in play because UK Boris Johnson exited a deal with China to proceed in return for an equity stake in the Sizewell C project. Meanwhile, China’s 1000 MWe PWR, the Hulaong One, is nearing completion of  the UK Office of Nuclear Regulation’s generic design assessment process.

The UK government is now scrambling to replace the Chinese commitment to Sizewell C and to Bradwell with western institutional and sovereign wealth fund investors. The UK government wants private capital for 60% of the costs of building Sizewell C, with the state and EDF both taking a 20% share. Funding for Bradwell might take place under the recently approved RAB financing method assuming a nuclear vendor can be found for it.

If South Korea is seek to enter the UK nuclear market, it might be able to shorten the licensing process by citing its work in the UAE building four 1400 MWe PWRs. The UAE managed to process the license applications in about half the time it takes the UK ONR to achieve the same result.

# # #

DARPA Seeks Proposals for Nuclear Thermal Rockets

DARPA is seeking proposals for Phases 2 and 3 of the Demonstration Rocket for Agile Cislunar Operations (DRACO) program for the design, development, fabrication, and assembly of a nuclear thermal rocket engine. The goal is to execute an in-space flight demonstration of nuclear thermal propulsion in fiscal year 2026.

draco_v2_619The overall objective of DRACO is to enable time-critical missions over vast distances in cislunar space, the area between Earth and the moon.

Nuclear thermal propulsion achieves high thrust-to-weight similar to chemical propulsion but with two to five times the efficiency using systems that are both faster and smaller than electric and chemical systems, respectively.

These propulsion capabilities will enable the United States to enhance its interests in space and to expand possibilities for NASA’s long-duration human spaceflight missions.

Phase 1 of the DRACO program involved two parallel risk reduction activities. Track A focused on developing a preliminary design for the rocket engine reactor. Track B concentrated on developing a conceptual design for the in-orbit demonstration system.

DRACO’s planned Phases 2 and 3 will focus on developing and demonstrating nuclear thermal rocket engine operation in orbit. The Broad Agency Announcement can be found at  The RFP was published on 05/04/2022 and responses are due 08/05/2022. See the RFP for scope and other contracting information. Direct Q&A to

DARPA awarded contracts for Phase 1 of the Demonstration Rocket for Agile Cislunar Operations in April 2021. General Atomics received a $22 million order to develop a design for a nuclear thermal propulsion reactor and subsystem, the centerpiece of the program.

Blue Origin and Lockheed Martin won contracts valued at $2.5 million and $2.9 million, respectively, to independently design a spacecraft using the propulsion system.

DARPA expects to choose one provider for the next two phases, which according to a May 4 solicitation are focused on finalizing the detailed nuclear thermal rocket design and building the spacecraft and its flight engine. Once completed, DARPA plans to conduct an on-orbit demonstration in fiscal 2026.

The agency’s fiscal 2023 budget request includes $57 million for DRACO, a $20 million increase from last year, which will support the transition to the next phase.

“The United States employs maneuver to maintain advantages in the land, sea, and air domains. However, maneuver is more challenging in space due to propulsion system limitations,” said Major Nathan Greiner, program manager in DARPA’s Tactical Technology Office.

“To maintain technological superiority in space, the United States requires leap-ahead propulsion technology that the DRACO program will provide.”

According to DARPA, DRACO’s nuclear thermal propulsion system could enable rapid maneuver in space, which is difficult to perform with spacecraft powered by electric or chemical propulsion. While chemical systems provide a high thrust-to-weight ratio and electric systems offer high efficiency, a nuclear thermal system combines both features, making it ideal for cislunar missions.

“This enables NTP systems to be both faster and smaller than electric and chemical systems, respectively,” the solicitation states.

“The propulsive capabilities afforded by NTP will enable the United States to maintain its interests in space and to expand the possibilities for NASA’s long-duration human spaceflight missions.”

DARPA notes that NASA has a particular interest in NTP technology because of its potential to reduce the travel time of its missions and return astronauts to Earth much faster in the event of an emergency. The two agencies are cooperating on DRACO, and NASA has offered to partner with companies bidding on the later phases of the program, offering its subject matter expertise as well as testing facilities.

& & &

Purdue and Duke Energy Plan Study for Campus Nuclear Reactor

purduePurdue University and Duke Energy announced April 27 that they plan to jointly explore the feasibility of using advanced nuclear energy to meet the campus community’s long-term energy needs.

Purdue and Duke Energy intend to study power produced through small modular reactors (SMRs). The joint press statement did not state a preference for a reactor type, e.g., LWR or one of the advanced designs, or a vendor.

It is likely that such a reactor would have dual missions of providing power for the university campus and as a research platform. A timeframe for completing the study wasn’t specified in the press statement. If this exploration leads to development of an SMR, it will be a first for the giant utility.

Only one SMR design is licensed in the US so far which is NuScale’s 50 MWe SMR. However, others are coming in the next few years including the GE Hitachi BWRX-300, which is also a LWR type design. Advanced designs involving high temperature gas configurations and molten salt reactors will likely be available before the end of the decade.

Assuming Purdue did decide to build an SMR on campus, applying for and getting a construction license could take up to four years and construction another two-to-three years. Funding for the project would have to be secured along with hiring of an EPC to build it. At current global pricing, a 300 MWe SMR would cost ($4500/Kw) about $1.35 billion. On the other hand, a 50 MWe SMR at the same cost, would come in at $225 million which is probably more in line with Purdue’s checkbook.

These timelines and costs didn’t phase the key leaders of the joint effort who expressed their enthusiasm for it.

“No other option holds as much potential to provide reliable, adequate electric power with zero carbon emissions,” said Purdue President Mitch Daniels.

“Innovation and new ideas are at the core of what we do at Purdue, and that includes searching for ways to minimize the use of fossil fuels while still providing carbon-free, reliable, and affordable energy. We see enough promise in these new technologies to undertake an exploration of their practicality, and few places are better positioned to do it.”

Duke Energy Indiana President Stan Pinegar said, “We can share our experience with one of America’s premiere engineering schools to see what this technology could do for its campus as well as the state.”

Purdue is currently powered through the Wade Utility Plant, which is a 31 MWe gas fired combined heat and power system that uses steam to provide heat, electricity and chilled water that is used to cool facilities.

The Duke Energy Combined Heat and Power Plant at Purdue University, which began operations last month, is a 16 MWe gas-powered plant on the southern edge of the university’s West Lafayette campus. Built, owned and operated by Duke Energy, the plant produces electricity for the company’s customers and is a new source of thermal energy in the form of steam for Purdue’s heating and hot water needs. Approximately 50% of campus electricity is purchased from Duke Energy.

SMRs are revolutionary in part because of their modular nature. They can be prefabricated off site, thereby saving money and time in construction. And Purdue is at the forefront of this technology by pioneering, developing and verifying the steel-plate composite construction used in SMRs at the on-campus Bowen Laboratory through the Center for Structural Engineering and Nuclear Power Plants, which is led by Amit Varma, Purdue’s Karl H. Kettelhut professor of Civil Engineering and director of the Bowen Laboratory of Large-Scale CE Research.

“Steel-plate composite technology is fundamental to successfully deploying SMRs within budget and on schedule,” Varma said.

“We have the world’s pre-eminent team and facilities to conduct the testing, analysis, design, and construction demonstration to actualize the potential of this technology.

Purdue engineering leaders and experts involved will include Mung Chiang, Seungjin Kim, Amit Varma and Arden Bement.

  • Chiang is the executive vice president of Purdue University for strategic initiatives and the John A. Edwardson Dean of Purdue’s College of Engineering.
  • Kim is the Capt. James McCarthy, Jr. and Cheryl E. McCarthy Head of the School of Nuclear Engineering at Purdue University.

Bement achieved international recognition as director of the National Science Foundation and director of the National Institute of Standards and Technology. He has a long and distinguished career with Purdue, having served as the Basil S. Turner Distinguished Professor of Electroceramics, the David A. Ross Distinguished Professor of Nuclear Engineering, the chief global affairs officer, and the inaugural director of the Global Policy Research Institute.

# # #

Posted in Nuclear | Comments Off on California May Yet Save Diablo Canyon

Idaho Lab RFI for Net-Zero Campus Microgrid

INL-logo-blue-large.pngBattelle Energy Alliance (BEA), an entity that manages and operates the Department of Energy (DOE) national laboratory, on April 29 launched a request for information (RFI) from industry, utilities, energy users, and other stakeholders that could inform how it can integrate nuclear-generated power and heat into a campus microgrid. The initiative falls under the April 2021–launched INL Net-Zero Program, which aims to eliminate or offset all emissions from the campus where 5,400 employees work.

Note to Readers: This blog post is a brief report about
and summary of the full INL request for information.
net zero 1 inl

In a statement to Power Magazine, INL Director John Wagner said, the lab’s demonstration of net-zero solutions, including the integration of advanced reactors on a campus microgrid, will be pivotal to the lab’s initiatives to explore nuclear’s power and heat capabilities.

“Nuclear energy is absolutely essential to achieving national and international net-zero goals,” Wagner said. “We see this work as not only a core part of our mission, but also an opportunity to lead by example and reduce barriers to deploying emission-free nuclear energy technologies to local and global communities.”

Request for Information

Battelle Energy Alliance, LLC (BEA), the managing and operating contractor for the United States (U.S.) Department of Energy’s (DOE) Idaho National Laboratory (INL) in Idaho Falls, Idaho, is issuing this Request for information (RFI) to invite input on options for reducing energy-related emissions at INL by using nuclear-generated electricity and/or heat as part of the INL Net-Zero Program.

BEA anticipates the eventual need for involvement of various subcontractors and suppliers to accomplish the INL Net- Zero Program. As such, BEA is seeking feedback from industry, utilities, energy users, and other stakeholders to inform the development of several alternative approaches, including design, construction, and operation of a nuclear reactor resource.

BEA is seeking information only and is not soliciting offers or acquiring services or goods at this time. This RFI will inform next steps in INL’s Net-Zero Plan to include Nuclear generation in the path forward.

INL Net-Zero Vision

INL plays an important role in helping the nation resolve its major energy and security challenges. At INL, the driving force behind our nuclear and other clean energy research and development (R&D) is creating clean, scalable, and sustainable energy solutions to address national and global needs while reducing environmental impacts. INL will lead by example, committing to become a national
carbon neutral prototype and achieving net-zero emissions from INL operations by 2031.

Using technology innovations, collaborations, increased efficiencies, and novel approaches, BEA will demonstrate the path forward for establishing a clean energy economy. This Program is an opportunity to demonstrate and deploy advanced nuclear reactors, grid integration, transportation electrification, improved energy storage, and other elements of clean, integrated energy systems at scale.

BEA is prepared to demonstrate net-zero solutions, including integrating advanced nuclear reactors and other clean energy systems on a net-zero microgrid to provide clean electricity, thermal energy, hydrogen, ammonia, and/or other value-added products to achieve our carbon-reduction goals (see Figure 1 above). BEA plans to implement and model the net-zero actions in three parts, building on each part: (1) Demonstration; (2) Pilot Applications; and (3) Campus-wide implementation to achieve net-zero by 2031.


Net-Zero at Idaho National Laboratory

BEA plans to demonstrate that current utility needs for affordable, reliable, and dispatchable generation capacity can be developed in tandem with cutting-edge clean energy technology. BEA seeks to be a research site where equipment manufacturers, pipelines and fuel transporters, clean fuels suppliers, DOE national laboratories, and utilities can come together to demonstrate the scalability of emerging technologies that enables the electricity sector and other energy use sectors to effectively achieve their energy and environmental goals.

This work will demonstrate how to transition between traditional fuels to emerging net-zero technologies at utility scale while maintaining reliable, resilient operations. Nuclear energy is a dispatchable energy source that does not emit greenhouse gases or other air pollutants during operation, offering multiple benefits to a decarbonized future—including improved air quality,1 firm power, and reduced volatility in energy costs.

Numerous studies have evaluated the potential costs associated with achieving decarbonization across the energy sector, while also maintaining the reliability and resilience of the electricity sector. These studies point to the need for firm power sources in the power mix to reduce electricity costs.

The peer-reviewed literature illustrates the potential for nuclear energy to be a significant contributor to achieving net-zero goals. At the same time, past performance also demonstrates the effectiveness of nuclear energy. France, for example, achieved 80% decarbonization of the nation’s electric grid in less than two decades by scaling up nuclear energy. We are focused on creating clean, scalable, reliable, and sustainable energy solutions to address national and global needs while reducing environmental

This sits at the center of the Net-Zero Program. BEA has committed to becoming a national carbon-neutral prototype and achieving net-zero emissions across all INL operations by 2031. Achieving net-zero means drastically reducing onsite emissions and offsetting the limited residual emissions from activities that are very challenging to decarbonize. This is a substantial and long-term commitment.

BEA will use technology innovations and collaborations, increased efficiencies, and novel approaches to demonstrate the path forward for establishing a clean energy economy that includes nuclear energy generation.

As part of this goal, BEA’s microgrid allows for the introduction of energy from multiple zero carbon sources, including small modular and micro-reactors, into an operating transmission and distribution system. This test bed provides a singular opportunity for industry to prove components and test control systems. We anticipate exporting the fundamental design of the microgrid to future locations, such as stand-alone industrial parks, commercial facilities, and remote locations requiring net-zero carbon resources, to reliably meet energy demands through nuclear energy.


According to the Center for Climate and Energy Solutions, elements of a microgrid (image) could include: controllable generation like nuclear power plants including small modular reactors, micro reactors, (not shown), gas-fueled combined heat and power (CHP) and fuel cells; limited or non-controllable generation like a photovoltaic solar array or wind turbine (not shown); backup generators; uninterruptible power supply (UPS); and energy storage capability.

The microgrid manager (at the center) balances generation and load. The microgrid interacts with the local distribution network or the macrogrid through the points of common coupling. The power sources incorporated into the microgrid depend on customer requirements (industrial, residential, etc.), and the business case for fulfilling them with various energy generation technologies.


BEA invites all interested parties to submit, in writing by May 2 2022, comments and information on matters addressed in this RFI. All questions and responses related to this RFI shall be sent to Wendy Hall at

  • RFI Release Date: April 4, 2022
  • RFI Revision 1 Release Date: April 14, 2022
  • RFI Responses Due: May 16, 2022

# # #

Posted in Nuclear | Comments Off on Idaho Lab RFI for Net-Zero Campus Microgrid

China Greenlights Six New Nuclear Reactors

  • China Greenlights Six New Nuclear Reactors
  • Russia’s Mixed Prospects for Exports Due to Its Invasion of Ukraine
  • Update on Prospects for New Nuclear Power Plants in Poland
  • NuScale Spins Up Supply Chain for Major Reactor Components
  • Japan / JAEA And MHI Join Global Race To Generate Green Hydrogen From Nuclear

China Greenlights Six New Nuclear Reactors

greenlightThe Chinese government has given a green light to the construction of six full size MWe PWR type nuclear reactors at three coastal sites.

Four of the reactors, which are CAP1000s, are based on the 1150 MWe Westinghouse AP1000 design, and are located at;

  • Sanmen 3 & 4 – Zhejiang; to be built by CNNC
  • Haiyang 3 & 4 – Shandong; to be built by SPIC/SNPTC

Two additional reactors will be 1000 MWe Hualong PWRS One based on a French design.

  • Lufeng 1 & 2 – Guangdong; to be built by CGN

Westinghouse issued a press release calling the CAP1000s as being AP1000s, but while these units will have Westinghouse components, there will be significant localization for them.

According to Nuclear Engineering International, the CAP1000 is a licensed adaptation of the AP1000 with significant localization of nuclear components. Following is a brief summary of similarities and differences of the two design implementations based on this report.

The Westinghouse AP1000 is the main basis of China’s move to generation III technology, with four reactors built and commissioned at Sanmen and Haiyang, two each for for CNNC and CPI, respectively. SNPTC was responsible for the engineering, design and project management of these first AP1000 projects, which were built as part of a technology-transfer agreement with Westinghouse.

china nuclear plants map WNN

The next eight units (CAP1000s) will involve higher local content (the aim is for 80%), although they will still contain some key components from Westinghouse, including digital control systems, fuel and reactor internals. As part of the agreement, the Chinese supply chain takes an increasingly large share of reactor construction.

Overall, the World Nuclear Association (WNA)  notes differences in the CAP1000 from the AP1000 include conforming to Chinese design standard GB6429, construction management, supply chain technical requirements, post-Fukushima modification, and module design. The AP1000 design has undergone post-Fukushima enhancements, including addition of waterproof doors, 72-hour water supply, enhanced spent fuel pool level monitoring instruments, and an improved emergency command center

The fact that only four of these planned eight CAP1000s have been authorized so far leaves another four to be assigned to future sites. China’s list of planned new reactors is somewhat a work in progress as indicated by changes from time-to-time in assignment of specific reactor designs to various sites. WNA notes that it is likely that some planned CAP1000 will be displaced by the Hualong One which is also China’s export offering of a full size PWR. This shift will eventually end China’s reliance on Westinghouse for key components for these new reactors and strengthen resilience of the country’s supply chain.

The World Nuclear Association notes that China has become largely self-sufficient in reactor design and construction, as well as other aspects of the fuel cycle, but is making full use of western technology while adapting and improving it. Relative to the rest of the world, a major strength is the nuclear supply chain. China has 53 nuclear power plants as of the end of 2021 with total generating capacity of 55 GWe.

& & &

Russia’s Mixed Prospects for Exports Due to Its Invasion of Ukraine

The question is raised whether Russia’s unprovoked invasion of Ukraine, and resulting western sanctions, will have any effect on Rosatom’s exports of Russian built nuclear reactors? So far the answer is not much. This could change over time. For now, here is a snapshot of selected known deals with various countries listed in order, more or less, of best prospects to worst.

Egypt claims an end is in sight for long running paperwork snarls related to issuing a construction permit later this year for the 1st of four 1200 MWe Russian built VVER nuclear reactors.  Rosatom is financing 85% of the project cost.

Turkey is proceeding with Rosatom’s new build of 4 1200 MWe VVER at Akkuyu on the Mediterranean coast. However, Rosatom has not been able to attract investors for a 49% equity stake.  Three of the four planned units are under construction with the first unit begun in 2018 planned to be completed in 2023 and each additional unit to follow by one year respectively. Turkey has plans for reactors at two other sites, but no vendors are committed to build at them.

The future of the Akkuyu project may be impacted by western sanctions that will prevent Rosatom from procuring key components for nuclear and non-nuclear systems. Examples include components for the steam systems, turbines, computer chips for sensors and computers for the control room, and transformers and other parts to connect the reactor to the grid.

Rosatom is doing well with India having commissioned 2 1000 MWe VVER at Kudankulam, Tamil Nadu; building 2 more, and planning 2 more. Separately, there is a plan for 6 similar units at Kovvada in Andhra Pradesh. Separately, India is building a fleet of 10 700 MWe PHWRs using an all India supply chain as the CANDU type units do not require the large forgings for reactor pressure vessels.

Rosatom has broken ground to build four VVER-1200 units in China – two at Tianwan (units 7&8), and two at Xudapu (units 3&4). China is providing the financing with Russia responsible for the nuclear island only indicating significant localization for turbines, switchyard, and grid improvements. Russia previously built Tianwan Units 1 through 4. Units 5 & 6 are CAP1000s / M310 PWRs based on a French reactor design. No further VVERs are on China’s list of planned new nuclear power stations.

Rosatom’s prospects in Poland and South Africa are mixed due to intense competition from other vendors complicated by the current inability of neither nation to pay for 50% of the costs.

  • Poland’s private sector is moving ahead of the government by funding several SMR initiatives. Currently Russia does not offer an SMR for export though it has several SMR initiatives for domestic use of them in Siberia. While the Polish government has ambitious plans to build six full size reactors, it hasn’t secured its domestic funding share for the effort.
  • South Africa is reported to be planning an tender for 2500 MWe of nuclear generating capacity, but until the government fixes Eskom’s financial woes, it is unlikely to release it. In 2014 Rosatom signed an agreement with the then South African government headed by then President Jacob Zuma to build eight 1200 MWe VVER which would have locked in the country’s energy security with Russia for the next 60 years. The deal fell apart due to conflicts within the government over charges of nepotism, secrecy and double dealing in the procurement process, and other related charges of high level corruption.

Rosatom was edged out of building a 1000 MWe VVER in Argentina by China’s Belt & Road program which will build a 1000 MWe Hualong One pending final financial terms. Argentina wants China to pay for the whole $8B including grid upgrades. So far China has only offered 50% financing.

  • Argentina has long term plans to build another CANDU type reactor at the Atucha site. Russia has no experience with PHWRs making it an unlikely bidder for the effort. China has two CANDU in revenue service and has previously proposed to partner with Canada’s SNC Lavalin for work on a CANDU project in Romania.

Russia and China have been banned from bidding on tenders for new nuclear reactors in Czech Republic and Romania on “security grounds.” The Czech Republic blames Russia for blowing up a military warehouse full of munitions bound for Ukraine. Both countries push back on Russia’s presumption that the two nations are “captive markets” for new nuclear power based on their prior history of being behind the Iron Curtain during the Cold War era.

  • The Czech Republic has a current tender out for a single 1200 MWe PWR at Dulovany and plans long term to also build one or more new reactors at Temelin. Romania continues its long running effort to complete two PHWRs at Cernavoda.
  • The Romanian government signed an MOU with NuScale last Fall for SMRs. A spokesman for NuScale said this week the due diligence and work scope planning for it is ongoing.  No Romanian nor US government funds are committed at this time to build an SMR.

Finland suspended work in April 2022 on licensing a planned new build of a 1200 MWe VVER at Hanhikivi. Plus, no construction activity was impacted as the new build is still at the paperwork stage due to recurring regulatory compliance issues. Preliminary site work was complicated over expansion of the site’s boundaries.

  • Update 05/02/22 – (NucNet) Finnish nuclear energy consortium Fennovoima terminated its engineering, procurement and construction (EPC contract) with Rosatom citing “significant delays”, the company’s “inability to deliver the project,” and worsening risks as a result of the war in Ukraine. Rostom has not been able to complete the requirements to obtain a construction permit from Finland’s nuclear safety agency. In April 2021, Fennovoima said commercial operation of Hanhikvi-1 was likely to begin a year later than originally planned in 2029. It said total investment costs for the project had increased from €6.5-€7bn to €7-€7.5bn. It looks like a potential next step for this project is for Finnish nuclear utility Fennovoima to re-issue a tender for it.
  • Finland, which shares a long common border with Russia, and was invaded by that country in 1940, is sufficiently alarmed by Russia’s invasion of Ukraine that it is making plans to apply to join NATO. For energy security reasons, having Russia control a 1000 MWe nuclear reactor in country has become a non-starter.

Overall, Russia’s main problem for exports of full size nuclear power plants, VVER 1000 & 1200 MWe, is that the steel plates that are used to make reactor pressure vessels come from the Kramatorsk steel plant which is in a contested area of Donetsk, Ukraine. On April 9th Russian military forces attacked the railway station at Kramatorsk killing at least 50 people and injuring 100s more according to the BBC. It is not clear whether the steel plant itself has been damaged in the fighting. It isn’t clear that local Russian forces know the significance of the steel plant for Rosatom’s exports. Elsewhere in Ukraine, Russian forces have indiscriminately shelled industrial and civilian targets as part of the invasion.

& & &

Update on Prospects for New Nuclear Power Plants in Poland

There is a lot of activity among vendors seeking to build new nuclear power plants in Poland. The offers range from small modular reactors to full size, e.g., 1000 MWe or larger, plants. Leading the pack is South Korea which submitted a proposal to build six full size reactors. Poland has not yet announced how it will pay for new full size reactors.

Korea Submits a Bid

Korea Hydro and Nuclear Power (KHNP) has made a “technical and price proposal” to Poland for the construction of six APR-1400 nuclear reactors by 2033.

The proposal called for “the construction of six APR1400 reactors with a total capacity of 8.4 GW, the first of which could start operation by 2033.

The Polish government noted that three nuclear energy suppliers have shown interest in the country’s program: Westinghouse, EDF and the South Korean KHNP. In addition to the Korean proposal just received, the country already has a proposal from EDF based on the EPR2 reactor design, and by September of this year, Westinghouse has to submit its proposal, which will be based on the AP1000.

Poland’s KGHM and TAURON to co-operate on SMRs

Polish companies KGHM and TAURON have signed a letter of intent regarding cooperation in the construction of small modular reactors (SMRs). KGHM is a copper and silver producer and large industrial energy user and TAURON is an energy company.

Under a contract signed earlier this year, KGHM with NuScale will implement the SMR technology in Poland. The first power plant is to be commissioned by 2029. Clean energy will power the production divisions of the copper company.

“We initiated the clean energy production project as one of the first in Poland. We have signed an agreement with an American partner [NuScale] and we are preparing investment analyses. The SMR technology will increase the cost-effectiveness of KGHM and transform the Polish energy sector. Together with TAURON, we will work and explore possibilities for further development,” said Marcin Chludzinski, President of the Management Board of KGHM Polska Miedz.

Pawel Szczeszek , CEO of TAURON Polska Energia, explained: “We strive to make modular nuclear reactors an important element of our target production mix. This will most likely be reflected in the new corporate strategy prepared in the Group. The cooperation established today with KGHM opens up this perspective for us.”

Bechtel Signs on with Polish Firms for Nuclear Work

Bechtel has signed Memorandums of Understanding with 12 Polish companies for the potential development of two new nuclear power plants in Poland. The projects could support construction of Westinghouse 1150 MWe AP1000s if Poland selects the company for this work.

In July last year, Westinghouse Electric Company announced the launch of front-end engineering and design (FEED) work under a grant from the United States Trade and Development Agency “to progress” the nuclear energy program in Poland.

Westinghouse said the FEED was one of the key elements in the implementation of the Intergovernmental Agreement between Poland and the USA regarding cooperation to develop a civil nuclear power program.

Westinghouse is executing the FEED, which will be based on AP1000 technology, together with Bechtel. The FEED study will be reviewed later this year by the Polish government to help in its selection of the best partner for the nuclear power plant program.

In January, Westinghouse signed memorandums of understanding (MoUs) with ten Polish companies for cooperation on the potential deployment of AP1000 nuclear power plants in Poland and elsewhere in Central and Eastern Europe. The MoUs include cooperation on the possible construction of six AP1000 plants for the Polish nuclear power plant program.

The first nuclear unit is to be commissioned in 2033, with five more units to follow by 2040. The coastal towns of Lubiatowo and Kopalino in Poland’s Choczewo municipality have been named as the preferred location for the country’s first large nuclear power plant.

& & &

NuScale Spins Up Supply Chain for Major Reactor Components

US developer of small modular reactors NuScale is having a busy week signing up partners and suppliers for its plans to deploy its SMRs in global markets

NuScale Power and Doosan Sign Agreement to Begin SMR Production

NuScale Power LLC and Doosan Enerbility Co., Ltd. announced through a signed agreement that Doosan will begin production of forging materials for NuScale’s Small Modular Reactors (SMRs) as early as 2022, with expectations for full-scale equipment manufacturing by the latter half of 2023. Specifically, Doosan, a Korean industrials and energy company, will begin production of forging dies for NuScale’s Upper Reactor Pressure Vessel, marking the start of NuScale Power Module (NPM) production.

Doosan completed a manufacturability review for the NPM in January 2021, which successfully established the manufacturing sequence and processes for the NPMs. Doosan is now working on NPM component prototype development. With this new agreement, Doosan will begin manufacturing of large forged materials used for NuScale’s SMRs in 2022 and expects to begin full-scale manufacturing of NPMs in the second half of 2023.

This milestone builds upon NuScale and Doosan’s existing relationship, which began in 2019 when Doosan made its initial equity investment in NuScale. Since then, Doosan has conducted an extensive multi-year effort, completing the design for manufacture of the NPM and performing manufacturing trials to reduce schedule risk and increase cost certainty.

NuScale Power Signs MOUs with GS Energy, Doosan, and Samsung on SMRs

NuScale Power LLC announced it has signed a Memorandum of Understanding (MOU) with its partners, Samsung C&T Corporation, Doosan Enerbility Co., Ltd., and GS Energy Corporation (“GS Energy”) to explore the deployment of NuScale’s VOYGR power plants. This announcement is a critical next step in bringing NuScale’s clean energy solution to Asia.

Along with financial support, Doosan, Samsung and GS Energy will lend their respective expertise to NuScale Power in areas such as component manufacturing, prior nuclear construction experience, and power plant operation. Doosan is a world-renowned nuclear pressure vessel manufacturer, Samsung is a trusted nuclear power plant contractor, and GS Energy brings more than 20 years of expertise as a power plant operator.

NuScale Power Signs Collaboration Agreement with the U.S. Reactor Forging Consortium

NuScale Power and the U.S. Reactor Forging Consortium (RFC), comprised of North American Forgemasters (NAF), Scot Forge, and ATI Forged Products, announced they have signed a Collaboration Agreement to leverage the existing robust forging supply chain in the U.S., to prepare NuScale to deploy its small modular reactor (SMR) technology to customers worldwide and to support, retain, and expand U.S. manufacturing jobs.

The RFC is the combination of highly qualified expert suppliers of nuclear-grade forgings for the worldwide nuclear industry. The combined three companies act as the only fully integrated manufacturer of large alloy and stainless steel open die, seamless rolled ring, and large uniquely-shaped forgings (heads with integral nozzles) in the Western Hemisphere with as-forged piece weights exceeding 160 tons.

Under the Collaboration Agreement, the RFC and NuScale will cooperate in design for manufacturability reviews for forged geometries to reduce welding, chemical composition tailoring and optimized configuration for fabrication. The collaboration will support the U.S. supply chain planning as NuScale approaches near term commercialization of the NuScale Power Modules™ (NPM).

Consortium member NAF is currently partnering with Pennsylvania-based Center for Advanced Nuclear Manufacturing, operated by Concurrent Technologies Corporation (CTC), on a full production size shell research project that will focus on the use of austenitic stainless steel for reactor and containment vessels in SMRs and advance reactors.

Financed in part by a grant from the Commonwealth of Pennsylvania, Department of Economic Development, NAF in collaboration with its joint venture owners Scot Forge and ELLWOOD Group, INC. will perform melting, forging, heat treating, rough machining, mechanical testing, and non-destructive testing while CTC oversees the development and performs independent technical evaluations of the forged material.

& & &

Japan / JAEA And MHI Join Global Race To Generate Green Hydrogen From Nuclear

(NucNet) The Japan Atomic Energy Agency (JAEA) and Mitsubishi Heavy Industries (MHI) are to establish a demonstration green hydrogen production project at the High-Temperature Test Reactor (HTTR) in Ibaraki Prefecture, north of Tokyo.

The project means Japan has joined a number of countries in the race to generate green hydrogen from a nuclear reactor, The plan is to produce large quantities of low-carbon energy for industry, transport and home heating.

Hydrogen production is classified using a color scheme. “Grey hydrogen” denotes hydrogen produced from fossil fuels. Most of the world’s hydrogen production is grey. Green hydrogen, such as that produced by nuclear reactors, is considered low-carbon.

JAEA and MHI have been commissioned to set up the project by the Ministry of Economy, Trade and Industry’s Agency for Natural Resources and Energy (ANRE) as part of Japan’s efforts to attain carbon neutrality in 2050.

ANRE launched a tender in February for a demonstration project for the use of the HTTR for the mass production of hydrogen. JAEA, which operates the HTTR, chose MHI, which is conducting technical studies on hydrogen production using nuclear reactors, as the main contractor for the project.

The HTTR is a graphite-moderated gas-cooled research reactor. It achieved first criticality in 1998. It was restarted in July 2021 after the Nuclear Regulatory Authority said it was compatible with new regulatory standards introduced after the 2011 Fukushima-Daiichi accident. The HTTR was shut down following the accident along with other Japanese reactors.

JAEA said the heat produced by the HTTR has applications for a range of purposes, including power generation, fuel performance and the desalination of seawater as well as hydrogen production.

# # #

Posted in Nuclear | 1 Comment

US and Canadian Nuclear Utilities Partner on SMRs

  • US and Canadian Nuclear Utilities TVA & OPG Partner on SMRs
  • Kairos Power Forms Advanced Nuclear Development Consortium
  • Rolls-Royce Sets 2029 for FOAK of its 470 MWe PWR in Revenue Service
  • Mitsubishi Heavy Industries (MHI) Plans 1 MWt Transportable Reactor
  • DOE Seeks Applications, Bids for $6 Billion Civil Nuclear Credit Program
  • US Think-Tank Calls For Widespread’ Deployment Of Advanced Reactors

US and Canadian Nuclear Utilities – TVA & OPG – Partner on SMRs

Two of North America’s leading nuclear utilities will jointly work to develop and deploy advanced nuclear technology as part of the broader efforts to achieve a carbon-free energy future.

Ontario Power Generation (OPG) and the Tennessee Valley Authority (TVA)  are both exploring the deployment of small modular reactors (SMRs)  at their Darlington and Clinch River sites, respectively.

what are smrs

The agreement allows the companies to coordinate their explorations into the design, licensing, construction and operation of small modular reactors. No exchange of funding is involved. However, the collaboration agreement will help OPG and TVA reduce the financial risk that comes from development of innovative technology, as well as future deployment costs.

Jeff Lyash, TVA President and CEO. “Advanced nuclear technology will not only help us meet our net-zero carbon targets but will also advance North American energy security.”

“Nuclear energy has long been key to Ontario’s clean electricity grid, and is a crucial part of our net-zero future,” said Ken Hartwick, OPG President and CEO.

“Working together, OPG and TVA will find efficiencies and share best practices for the long-term supply of the economical, carbon-free, reliable electricity our jurisdictions need.”

“TVA has the most recent experience completing a new nuclear plant in North America at Watts Bar and that knowledge is invaluable to us as we work toward the new facility at Darlington,” said Hartwick.

“Likewise, because we are a little further along in our construction timing, TVA will gain the advantage of our experience before they start work at Clinch River.”

OPG and TVA have similar histories and missions. Both are based on public power models that developed from renewable hydroelectric generation before adding nuclear to their generation mixes. Today, nuclear generation accounts for significant portions of their carbon-free energy portfolios.

Both Utilities Actively Exploring SMRs

Ontario Power Generation (OPG) announced in December 2021 it will work with GE Hitachi (GEH) Nuclear Energy to deploy a Small Modular Reactor (SMR), the BWRX-300, at the Darlington new nuclear site, the only site in Canada currently licensed for a new nuclear build.

OPG and GE Hitachi will collaborate on the SMR engineering, design, planning, preparing the licensing and permitting materials, and performing site preparation activities, with the mutual goal of constructing Canada’s first commercial, grid-scale SMR, projected to be completed as early as 2028.

GEH plans to construct up to four 300 MWe small module reactors and aims to complete one of them by 2028 at the earliest. If built out to this level, the project at $4,000/Kw, would have an estimated cost at completion of all four units of $4.8 billion.

In December 2019 TVA became the first utility in the nation to successfully obtain approval for an early site permit (ESO) from the Nuclear Regulatory Commission to potentially construct and operate small modular reactors. The ESP approach was developed after a business arrangement with BWXT to support design and licensing of a 180 MWe SMR using LWR technologies did not go forward.

The 20-year Early Site Permit (ESP) is for a site at the 935-acre Clinch River plant near Oak Ridge, TN, for a nuclear facility that can produce up to 800 MWe total. TVA cited four SMR designs in its ESP application without stating a preference for any of them. An 800 MWe power station would likely require multiple units from any of the current SMR designs using LWR technologies. So far TVA has not stated a preference for any of them.

Kairos Power Forms Advanced Nuclear Development Consortium

Kairos Power has assembled four leading North American utilities and generating companies to launch an advanced nuclear development consortium named Kairos Power Operations, Manufacturing and Development Alliance (Kairos Power-OMADA) to advance the development of the company’s advanced fluoride salt-cooled high-temperature reactor (KP-FHR) technology.

Current member corporations include:

  • Bruce Power, Canada’s only private sector nuclear generator, producing 30% of Ontario’s power and employing more than 4,000 people.
  • Constellation, the nation’s leading provider of carbon-free energy. Headquartered in Baltimore, Md., its generation fleet powers more than 20 million homes and businesses.
  • Southern Company, a leading U.S. energy company serving 9 million customers through its subsidiaries with headquarters in Atlanta, Ga.
  • Tennessee Valley Authority (TVA), the largest federally owned utility corporation in the U.S., providing electricity for 153 local power companies serving 10 million people in Tennessee and six surrounding states.

The purpose of KP-OMADA is to bring together best-in-class nuclear owners and operators to advise on the development of KP-FHR technology, licensing, manufacturing, construction, and commercialization. By collaborating, the alliance will pool knowledge regarding the siting and development of Kairos Power’s User Facility (U-Facility) – a full-scale, non-nuclear demonstration reactor and operations /maintenance training facility – and the siting and development of Kairos Power’s KP-X – a first-of-its-kind, 140 MWe/unit commercial reactor operating at grid scale.

Kairos Power Hermes SMR at Oak Ridge, TN

In May 2021 Kairos Power and the Tennessee Valley Authority (TVA) announced plans to collaborate on deploying a low-power demonstration small modular reactor (SMR) at the East Tennessee Technology Park (ETTP)(map) in Oak Ridge, Tennessee. The project is a paradigm change for TVA which in its early site permit for the Clinch River site for an SMR only referenced light water reactor designs and did not indicate a preference for any of them.

The joint TVA/Kairos project involves design and development of an advanced small modular reactor (SMR). Nicknamed ‘Hermes’ it is a demonstration version of Alameda, California-based Kairos Power’s KP-FHR, a 140 MWe fluoride salt-cooled high temperature reactor using TRISO (TRI-structural ISOtropic) fuel pebbles with a low-pressure fluoride salt coolant.

The Kairos SMR has been selected by the US Department of Energy (DOE) to receive $629 million in cost-shared risk reduction funding over seven years (DOE share $303 million), under the Advanced Reactor Demonstration Program.

Kairos Power’s construction permit application for the Hermes low-power demonstration reactor is currently under formal review by the US Nuclear Regulatory Commission. The firm says the plant will be operational in 2026.

& & &

Rolls-Royce Sets 2029 for FOAK of its 470 MWe PWR in Revenue Service

(WNN)(Reuters) The chairman of Rolls-Royce SMR, Paul Stein, has told the Reuters news agency he hopes to get regulatory approval for its small modular reactor (SMR) design by mid-2024, with grid power from the first of a kind (FOAK) unit  able to be produced by 2029. The Rolls-Royce SMR is a 470 MWe design based on a small pressurized water reactor (PWR). The firm is currently scouting potential locations for the planned fleet of 16 units and is considering several sites abandoned by previous developers including Wylfa and Oldbury.

Reuters quoted Stein as saying that the regulatory part of the process had begun and “will likely complete in the middle of 2024. We are trying to work with the UK Government, and others to get going now placing orders, so we can get power on grid by 2029″.

The Rolls-Royce SMR design was accepted for Generic Design Assessment (GDA) review last month with the UK’s Department for Business, Energy and Industrial Strategy asking the UK’s Office for Nuclear Regulation (ONR) along with the environment regulators for England and Wales to begin the process.

GDA is a process carried out by the ONR, the Environment Agency (EA) and Natural Resources Wales to assess the safety, security, and environmental protection aspects of a nuclear power plant design that is intended to be deployed in Great Britain. Successful completion of the GDA culminates in the issue of a Design Acceptance Confirmation from the ONR and a Statement of Design Acceptability from the EA.

For most applicants the costly and complex regulatory review takes about four years. The timeline cited by Rolls-Royce CEO Stein raises a question about how Rolls-Royce will do it in half that time. There has been no indication from the UK Office of Nuclear Regulation that it will give the firm any special treatment such as an accelerated review.

If Rolls-Royce is overly optimistic about the timeline to complete the GDA, and it takes the usual full four years, then the timeline to break ground with the FOAK unit and the schedule for the other 15 units will be delayed accordingly as a result. Confidence in the Rolls-Royce estimate of a two-year schedule to complete its GDA would be enhanced by a joint statement from the firm and the ONR has to how they plan to do it.  If there is an accelerated method for LWRs at ORN, it could apply to other applications for these types of reactors that follow Rolls-Royce. If not, then there’s egg on somebody’s face for setting up CEO Stein to make this claim.

A Rolls-Royce-led UK SMR consortium aims to build 16 SMRs. The consortium includes Assystem, Atkins, BAM Nuttall, Jacobs, Laing O’Rourke, National Nuclear Laboratory, the Nuclear Advanced Manufacturing Research Centre and TWI. It plans to build up to 10 by 2035 and the remaining six by the early 2040s.

Earlier this month the UK Prime Minister Boris Johnson unveiled a new Energy Security Strategy setting out plans for rapid expansion of nuclear power capacity, with eight new large reactors and SMRs helping to produce 24 GWe capacity by 2050, representing about 25% of the UK’s projected electricity demand by that date.

& & &

Mitsubishi Heavy Industries (MHI) Plans 1 MWt Transportable Reactor

The Nikkei Asia wire service reports that Mitsubishi Heavy Industries (MHI)is moving ahead with its plans to develop and commercialize nuclear microreactors,reactors small enough to be delivered on trucks. At 3 meters tall and 4 meters wide, the microreactors will weigh less than 40 tons. The reactor and power generating equipment will fit inside a standard 40′ cargo container. The reactor is rated at 1 MWt thermal and 0.5MWe electrical.

From an MHI presentation at a 2021 IAEA technical meeting.

mhi tractor smr

Based on an all-solid-state core concept, the microreactor uses a highly thermal conductive graphite-based material that removes heat from core without liquid coolant. The nuclear reactor core and all other equipment will be contained in tightly sealed capsule containers.

MHI is planning mock-up tests from 2023 to 2025 to verify the cooling function—i.e., the passive core cooling by natural heat transfer without power source, water source, and operator action. The tests will not use nuclear fuels.

After those tests, prototype testing is planned to be performed from 2026 to 2030 to verify various features of the microreactor such as long-term operation, start-up/shutdown, and safety system functions, including passive shutdown and containment. Deployment of commercial units is planned for the 2030s timeframe.

Fuel Choices

It is not clear what fuel type the reactor will use other than it will be HALEU, e.g., enriched to between 5-19% U235. Mitsubishi fabricates fuel for light water reactors (LWRs) and also mixed oxide fuels for LWRs and advanced fuel designs. According to MHI the fuel for this mini reactor will not require replacement during its entire duration of operations of approximately 25 years. Once the fuel is spent, the entire microreactor can be recovered.

In related actions, MHI is working on the construction of the Rokkasho Reprocessing Plant, the key facility for Japan’s nuclear fuel cycle, and the Rokkasho MOX Fuel Fabrication Plant.

Heat Transfer System

The reactor design uses a solid state (graphene) core and uses CO2, in heat pipes, to drive the turbine. According to the US Department of Energy, supercritical carbon dioxide is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure.

Carbon dioxide usually behaves as a gas in air at standard temperature and pressure (STP) (STP), or as a solid called dry ice when frozen. If the temperature and pressure are both increased from STP to be at or above the critical point for carbon dioxide, it can adopt properties midway between a gas and a liquid.

At this state, sCO2 can be used efficiently throughout the entire Brayton cycle. (88F, 1000 PSI)  The use of CO2 to drive the turbine will provide greater efficiency in heat transfer from the reactor pressure vessel (RPV) than the conventional use of dry steam in LWRs.


Estimated Costs

Since the mini reactors will require minimal maintenance, they can be installed underground to reduce risk from natural disasters and terrorism. At a projected cost of $6000/Kw, a 0.5 MWe reactor would cost just $3M. While the cost of electricity generated by the reactor will likely be higher than for a conventional light water reactor, it is estimated that it will be less than the cost of diesel fuel powered generators now used in remote areas

& & &

DOE Seeks Applications, Bids for $6 Billion Civil Nuclear Credit Program

Funding Will Prevent At-Risk Nuclear Facilities from Premature Closure and Support President Biden’s Clean Energy Goals

The U.S. Department of Energy (DOE) announced plans to seek applications and sealed bid submissions under the $6 billion Civil Nuclear Credit Program (CNC) to support the continued operation of U.S. nuclear reactors. The guidance directs owners or operators of nuclear power reactors that are expected to shut down due to economic circumstances on how to apply for funding to avoid premature closure. This includes instructions on formulating and submitting sealed bids for allocation of credits.

This critical investment, made possible by President Biden’s Bipartisan Infrastructure Law, will help avoid premature retirements of reactors across the country due to financial hardship, preserve thousands of good-paying clean energy jobs to sustain local economies and protect our supply of carbon-free electricity generation.

“U.S. nuclear power plants contribute more than half of our carbon-free electricity, and President Biden is committed to keeping these plants active to reach our clean energy goals,” said U.S. Secretary of Energy Jennifer M. Granholm.

“We’re using every tool available to get this country powered by clean energy by 2035, and that includes prioritizing our existing nuclear fleet to allow for continued emissions-free electricity generation and economic stability for the communities leading this important work.”

The Biden-Harris Administration has identified the nation’s current fleet of reactors as a vital resource to achieve net-zero emissions economy-wide by 2050 which is a key deadline for reducing the harmful impacts of climate change. Shifting energy markets and other economic factors have resulted in the early closure of 12 commercial reactors across the United States since 2013.

This has led to a rise in emissions in those regions, poorer air quality, the loss of thousands of high-paying jobs, essential employers and financial contributors to local communities. The CNC program will equitably address these challenges while supporting the President’s clean energy goals to ensure that communities across the country continue to see the benefits of sustainable energy infrastructure.

The Diablo Canyon plant in California and the Palisades Plant in Michigan are two high profile cases of pending premature closure due to changing economic conditions. Green groups like the Sierra Club, which has a long history of anti-nuclear activism, complained to the Associated Press that spending $6 billion to prop up nuclear plants that are not economically viable will take away investment dollars from renewable energy projects.

Aerial view of the Diablo Canyon Nuclear

Aerial view of the Diablo Canyon Nuclear Power Plant.

Maria Korsnick, president and chief executive officer of NEI, said she thinks the federal program will level the playing field for nuclear energy and help clear a path to pass even more intensive energy/climate policies.

As urged by many public commenters during the Request for Information (RFI) period earlier this year, the first CNC award cycle will assign priority to  reactors that have already announced their intention to cease operations. Future CNC award cycles — including for the second to be launched in the first quarter in FY2023 — will not be limited to nuclear reactors that have publicly announced their intentions to retire.

Information for Applicants

For the first CNC award period, DOE is accepting certification applications and bid as a single submission to implement the program on a more rapid timeline.

Think-Tank Calls For Widespread’ Deployment Of Advanced Reactors

(NucNet) The US should aim to double domestic nuclear energy production by 2050 to help achieve 100% clean energy with the widespread deployment of advanced reactors a crucial part of policy, the Nuclear Innovation Alliance think-tank says. Download the Report

fv niaThe Nuclear Innovation Alliance (NIA) released its Fission Vision which is a blueprint for doubling U.S. nuclear energy production by 2050 to achieve 100% clean energy. The US-based NIA says advanced nuclear energy has the potential to greatly reduce carbon emissions by mid-century and help achieve 100% clean energy in the US.

Fission Vision calls for a focused national effort to develop, demonstrate and deploy the advanced nuclear technologies necessary to meet mid-century climate goals, support domestic energy production, create new jobs and tax revenue, and protect the nation’s global competitiveness. NIA said this promise can only be achieved with “the timely, efficient and widespread deployment of advanced reactors.”

NIA Executive Director Judi Greenwald provided the following statement on the release of NIA’s of Fission Vision:

“Significant development of advanced nuclear technologies is needed for the United States to reach mid-century climate goals. Fission Vision answers the question: What is the role advanced nuclear energy could play at a scale and at a pace to help provide safe, reliable and affordable clean energy? Fission Vision has three objectives

(1) Catalyzing a robust U.S. innovation and commercialization ecosystem;

(2) Ensuring “social license” to operate advanced nuclear energy, and

(3) Re-imagining and integrating advanced nuclear energy with other clean energy sources. If we can achieve these objectives – and we think we can – advanced reactors will play a major role in meeting our climate and energy goals by at least doubling U.S. nuclear energy production by 2050.”

The report warns that the US will need to rebuild the supply chain, complete nuclear projects on time and on budget, create incentives for deployment and enact policies that enable private investment.

According to the report, doubling domestic nuclear energy production from 800 TWh to at least 1,600 TWh by 2050 requires rapid and sustained deployment of advanced nuclear energy. Doubling domestic nuclear energy by 2050 requires constructing at least 100 GWe of new nuclear energy production in the next 30 years.

This deployment rate may seem daunting, the report notes, but nuclear energy has been constructed this quickly in the US before. Over 100 GW of light-water reactors were constructed between 1960 and 1990.

“The application of modern manufacturing and construction practices can help us meet or exceed historic nuclear energy deployment rates and enable the doubling of domestic nuclear energy production by 2050 using advanced nuclear energy,” Greenwald said

# # #

Posted in Nuclear | Comments Off on US and Canadian Nuclear Utilities Partner on SMRs

DOD to Build & Test Project Pele Mini Reactor at INL

  • DOD to Build & Test Project Pele Mini Reactor at INL
  • Updates on BWXT Microreactor Design Project & TRISO Fuels
  • Moltex and SNC-Lavalin Announce Strategic Partnership
  • Canada’s Laurentis Signs Agreement with Fermi Energia on SMRs
  • South Korea is Making a U-Turn on Nuclear Energy
  • South Korea / SK Conglomerate ‘Considering Investment’ in TerraPower
  • Turkey / Ambitious Nuclear Energy Plans ‘May Not Be Enough’, Says Minister

DOD to Build & Test Project Pele Mini Reactor at INL

The Department of Defense’s Strategic Capabilities Office (SCO) released a Record of Decision (ROD) for Project Pele, a program intended to design, build, and demonstrate a mobile microreactor.

SCO will construct an inherently safe by design nuclear microreactor capable of being transported by the DOD and able to deliver 1-5 MWe of electrical power for a minimum of three years and for as long as five years of full power operation.

GAO DOD Mini Reactor

This reactor will be assembled and initially operated at Idaho National Laboratory (INL), and will be the first electricity-generating Generation IV nuclear reactor built in the United States.

“Thanks to the tireless work of the contract teams, the valuable input from local stakeholders, and the talented and experienced NEPA technical support teams at the Department of Energy and U.S. Army Corps of Engineers, we are confident that an inherently safe by design mobile microreactor can be constructed and demonstrated safely at Idaho National Laboratory,” said Dr. Jeff Waksman, Project Pele program manager.

“Advanced nuclear power has the potential to be a strategic game-changer for the United States, both for the DoD and for the commercial sector. For it to be adopted, it must first be successfully demonstrated under real world operating conditions.”

In March 2020, Project Pele announced a Notice of Intent (NOI) to conduct an environmental analysis in accordance with the National Environmental Policy Act (NEPA). At the same time, SCO kicked off a two-year microreactor design competition. The NEPA process was conducted such that it would cover all possible reactor designs allowed under Pele’s technical requirements.

SCO Director Jay Dryer has released a ROD on construction and testing drawn from the analysis performed within a Final Environmental Impact Statement (FEIS), published in the Federal Register. The Record of Decision and the Environmental Impact Statement, as well as supporting documentation, are available online

SCO is considering engineering designs developed by two competing teams: BWXT Advanced Technologies, LLC, Lynchburg, Virginia; and X-energy, LLC, Greenbelt, Maryland. SCO said it has full confidence that both teams have developed reactor designs which can be constructed to meet SCO’s minimum technical requirements. However, only one design will be selected by DOD. An announcement on the award is expected later this spring.

The DOD uses approximately 30 terawatt-hours of electricity per year and more than 10 million gallons of fuel per day — levels that are only expected to increase due to anticipated electrification of the non-tactical vehicle fleet and maturation of future energy-intensive capabilities. A safe, small, transportable nuclear reactor would address this growing demand with a resilient, carbon-free energy source that would not add to the DoD’s fuel needs, while supporting mission-critical operations in remote and austere environments.

As a High-Temperature Gas Reactor (HTGR) using High-Assay Low Enriched Uranium (HALEU) Tristructural Isotropic (TRISO) fuel, Project Pele is a fourth-generation nuclear reactor, which can serve as a pathfinder for commercial adoption of such technologies, thereby reducing the nation’s carbon emissions and providing new tools for critical infrastructure support in military and civilian settings.

Project Pele is a whole-of-government effort, with critical expertise provided by the Department of Energy, the Nuclear Regulatory Commission, U.S. Army Corps of Engineers, the National Aeronautics and Space Administration, and the National Nuclear Security Administration.

The Pele reactor is to be a single prototype, which will be demonstrated only within the United States, under the safety oversight of the Department of Energy. A decision by the DOD on whether or not to transition the technology and to use it operationally will be made at a future date.

“The DoD has a long history of driving American innovation, with nuclear power being one of many prominent examples,” said Mr. Jay Dryer, SCO Director. “Project Pele is an exciting opportunity to advance energy resilience and reduce carbon emissions while also helping to shape safety and nonproliferation standards for advanced reactors around the world.”

& & &

Update on BWXT Microreactor Design Project

BWX Technologies, Inc. (NYSE: BWXT) is proceeding to deliver microreactors to commercial power and industrial customers in cooperation with Idaho National Laboratory and Oak Ridge National Laboratory.

The company’s BANR (BWXT Advanced Nuclear Reactor) is a transportable microreactor using TRISO fuel and was selected to participate in the U.S. Department of Energy’s (DOE) Advanced Reactor Demonstration Program (ARDP). DOE is contributing $85.3 million to the cost-share project over seven years, with BWXT funding the remaining amount.

BWXT is focusing on aggressive cost reductions for deploying this transportable microreactor through performance improvements and lower delivery costs.  (NAS Briefing) (BWXT Fact Sheet)

Triso Fuel Update

Subsidiary BWXT Advanced Technologies LLC (BWXT AT) has finished its formal cost-sharing contracting negotiations with the DOE and is on track to deliver the first round of BANR’s TRISO fuel for testing at Idaho National Laboratory’s Advanced Test Reactor in 2024 as scheduled.

Fuel testing at Idaho National Laboratory will provide important operational data on the performance of TRISO fuel particles. When complete, the project will have matured technologies related to key reactor safety systems in order to improve the overall economics for deployment.

This data is critical for approval by the U.S. Nuclear Regulatory Commission (NRC) and transition to deployment. BWXT AT is also partnered with Oak Ridge National Laboratory for the development of advanced modeling and simulation tools and manufacturing processes.

“We’re making a lot of progress in this program, and I’m very proud of the engineers and technicians who are keeping our reactor design and fuel development processes focused on deployment and stimulating demand in the advanced reactor market,” said Joe Miller, BWXT AT president. “Our collaboration with the national laboratories represents a longstanding commitment to delivering cutting-edge technologies that improve reactor performance and operation.”

About TRISO Fuel

TRISO refers to a specific design of uranium nuclear reactor fuel that can withstand extreme heat and has very low environmental risks. A single TRISO particle is tiny – about the size of the tip of a ball-point pen. Every TRISO particle carries its own layered containment system to protect the environment and the public. Thousands of these particles are pressed into ‘compacts’ similar in size to a tube of lip balm. BWXT is the only U.S. company to manufacture irradiation-tested uranium oxycarbide TRISO fuel using production-scale equipment.

& & &

Moltex and SNC-Lavalin Announce Strategic Partnership

Moltex Energy Canada Inc. (Moltex) and SNC-Lavalin Group (TSX: SNC) announced a strategic partnership to advance clean nuclear energy. SNC-Lavalin, a fully integrated professional services and project management company with offices around the world, will support the development and deployment of Moltex’s innovative nuclear technologies.

moltex cutaway

Moltex will draw on SNC-Lavalin’s world-class network of experts in engineering, licensing and regulatory affairs, cost estimating, supplier qualification and management, quality assurance, and construction and operation planning. SNC-Lavalin will collaborate with Moltex to attract new customers and promote Moltex’s business goals.

“Canada and the world will need to explore all nuclear technology options to meet net zero commitments. Given the scale of the challenge, it is important that we work on the deployment of Gen III SMRs and grid-scale reactors and look to the future and support the development of Gen IV reactors. Moltex’s unique Gen IV molten salt design can not only help achieve net zero carbon, but it can also help to reduce nuclear waste,” said Joe St. Julian, President, Nuclear, SNC-Lavalin.

In addition, Mr. St. Julian has accepted a seat on the Moltex board of directors, where his experience and leadership will be greatly valued.

In March 2021 Moltex received $50.5M CDN funding from Canada’s Strategic Innovation Fund and Atlantic Canada Opportunities Agency (ACOA) to fund further development and commercialization of the company’s molten salt reactor and spent fuel recycling technology at a site in St. John, New Brunswick province.

About the Moltex Reactor

Moltex is a private company developing breakthrough nuclear technologies, including a Stable Salt Reactor – Wasteburner (SSR-W), which uses recycled nuclear waste as fuel; a Waste To Stable Salt (WATSS) process for recycling nuclear waste; and GridReserve thermal energy storage tanks that allow the reactor to complement intermittent renewables. Moltex is developing first-of-a-kind units for NB Power in New Brunswick, Canada, and intends to build further units across the country and abroad.

& & &

Canada’s Laurentis Signs Agreement To Work With Fermi Energia on SMRs

Laurentis Energy Partners of Canada and Estonian energy company Fermi Energia have signed an agreement to work together to support the development of small modular reactors in Estonia. The two firms announced they will work to support their development of small modular reactors (SMRs) in Estonia. Femi Energia has signed MOUs with several other developers of SMRs but has not yet attracted sufficient investor interest to fund moving forward with any of them.

Laurentis, a subsidiary of Ontario Power Generation (OPG), offers SMR services throughout the development lifecycle from feasibility and planning through construction, commissioning, operations, and sustainability solutions.

The aim is to develop an efficient and reliable SMR deployment program that will lead to successful licensing and financing of multiple SMR units in Estonia.

Estonia produces most of its energy from oil shale or imported power from neighboring countries. Since 2019, Fermi Energia has been exploring the possibility of developing and deploying a small modular reactor in Estonia to ensure a stable, clean, and reliable domestic electricity supply.

“OPG’s excellence as a nuclear energy utility and their selection of GE Hitachi’s BWRX-300 to be deployed at Darlington is a world-leading SMR project,” said Kalev Kallemets, CEO of Fermi.

& & &

South Korea Making a U-Turn on Nuclear Energy

(Wire Services) The transition committee working for President Yoon Suk-yeol said this week that the incoming government will embrace nuclear power in its decarbonization efforts, signaling a major shift in energy policy the outgoing Moon Jae-in government had said has no place for nuclear power.

Won Hee-ryong, chief policymaker setting out Yoon’s agenda, said Korea had seen more emissions and would see soaring electricity costs because of Moon’s push to phase out nuclear power, which makes up roughly a third of the country’s power.

“We need to put in a right, realistic and prudent plan to achieve carbon neutrality,” he said, suggesting that Moon’s strategy  had essentially backfired.

“So nuclear is back on the table along with every other technological tools that could help us cut carbon emissions,” said Kim Sang-hyup Kim, a committee member supporting Won.

Kim, the founder of the Coalition for Our Common Future, a foundation working on climate change, said Moon’s over reaching plan to have renewables account for 70%  of Korea’s power by 2050 poses a risk, as solar and wind power are not as reliable as nuclear power.

The transition committee said that the Yoon government, which begins work on May 10, will label nuclear energy “green” in its taxonomy, a list of climate-friendly activities the government approves, as early as August this year. The label change sets the direction of Korea’s energy policy.

The interest of South Korea’s heavy industries to participate in nuclear reactor export deals has been hampered by the anti-nuclear stance of the now outgoing government. Potential customers questioned the commitment of the country to potential deals if it wouldn’t support the technology at home.

South Korea is expected to bid on several opportunities including a new PWR in the Czech Republic at CEZ’s Dukovany site, and an upcoming  tender for two full size PWRs in Saudi Arabia. Currently, South Korea is completing the construction of four 1440 MWe PWRs in the United Arab Emirates. Two of the four units have been commissioned so far.

& & &

South Korea / SK Conglomerate ‘Considering Investment’ in TerraPower

(NucNet) South Korean conglomerate SK Group said it is looking at an investment of up to 10% in the company that is developing a new generation nuclear power reactor.

The Chosun Ilbo newspaper reported that SK, which has interests in chemical and energy, had been in talks with TerraPower, which has chosen a site in Wyoming as the preferred location for its first Natrium small modular rector.

SK did not formally confirm it was in discussions with TerraPower, but said it had been reviewing a potential investment in next-generation nuclear technology in a bid to decarbonize its operations. If the investment occurs it would be SK Group’s first entry in the nuclear energy industry. In 2021 the firm made investments in hydrogen production in Asia.

TerraPower and GE-Hitachi technology are developing the Natrium reactor demonstration project in Wyoming. They are working to develop plans for a first unit with Rocky Mountain Power, a division of Wyoming’s largest utility PacifiCorp, owned by Warren Buffett’s Berkshire Hathaway. It was not reported whether TerraPower or its partners were aware of or had entered into preliminary discussions with SK Group.

& & &

Turkey / Ambitious Nuclear Energy Plans ‘May Not Be Enough’, Says Deputy Minister

(NucNet) Turkey’s ambitious plans to build 12 large nuclear reactors at three sites might still not be enough as the country seeks to increase energy security and further reduce its imports of natural gas from Russia.

So far the country has only succeeded with development of one of the three sites where it plans to build the reactors. Japanese investors abandoned the Sinop project the Black Sea coast due to fears of cost overruns with an unproven reactor design  and efforts to come to terms with China at the Igneada in far northeast Turkey have been intermittent since 2016.

turkey nuclear

Turkey’s deputy energy and natural resources minister Alparslan Bayraktar told Nikkei Asia that the country needs more reactors because the 12 already under construction or planned “will not be enough if we consider the 2050-70s”.

He said Turkey is also considering the deployment of small modular reactors. He told Nikkei that Marisa Lago, the US Commerce Department’s undersecretary for international trade, and the new US ambassador to Turkey Jeffry Flake, visited him to discuss the potential introduction of SMR technology to Turkey. No specific commitments resulted from the meeting.

Turkey is building its first commercial nuclear station at Akkuyu, on Turkey’s Mediterranean coast, under a contract signed with Russia in 2010. Akkuyu will have four Generation III+ VVER-1200 units, with the first one expected to come online in 2023 and a further unit starting every year afterwards.

The total estimated cost of the project stands at $25 billion. Efforts by Roastom to acquire equity investments in the project by Turkish or other institutional investors have not panned out. The ownership of the project remains 100% in Russian hands.

In 2013, Turkey signed an intergovernmental agreement with Japan to develop a second nuclear power station project at Sinop on the Black Sea. The status of the Sinop project remains unclear. In January 2020, Turkey was reported to have cancelled the agreement because feasibility studies did not meet the energy ministry’s expectations with regard to schedule and pricing. Also, previously Japanese investors pulled out of the project in 2018 because of fears of cost overruns that could occur building the unproven 1150 MWe Atmea PWR, which was a joint design of France’s Areva and Japan’s Mitsubishi.

third site turkeyThe International Energy Agency said in 2020 the Turkish government had started talks with other partners to develop the project. Neither the IEA nor the World Nuclear Association named the potential partners.

Between 2013 and 2020 several other nuclear reactor vendors held preliminary discussions with Turkey about the project, but none proceeded beyond the point of initial consideration.

Mr Bayraktar said Ankara is also negotiating with China to build two or four CAP1400 nuclear reactors at Igneada in the Thrace region of northwestern Turkey, close to the border with Bulgaria. Talks first began in 2016 but remain at the policy level and have not resulted in a more detailed development agreement.

# # #

Posted in Nuclear | Comments Off on DOD to Build & Test Project Pele Mini Reactor at INL

Tennessee Site Near ORNL Chosen for HALEU Fuel Facility

  • Tennessee Site Near ORNL Chosen for HALEU Fuel Facility
  • Third Way – Developing Domestic HALEU Supply
  • Nuclear Innovation Alliance (NIA) Publishes A New Report on HALEU
  • Sen Manchin (D-Wv) Sen Risch (R-Id) The International Nuclear Energy Act Of 2022
  • Samsung and Seaborg Plan Molten Salt Floating Nuclear Power Barges
  • Space Allocated at Temelín for Future SMRs
  • Polish Miner KGHM Seeks Partnership with Romania’s Nuclearelectrica
  • UK’s First Light Fusion Announces Fusion Breakthrough

Tennessee Site Near ORNL Chosen for HALEU Fuel Facility

(WNN) (NucNet) A site in Oak Ridge, TN, has been selected as the site for the first commercial high-assay low-enriched uranium (HALEU)-based fuel fabrication facility to be built in the US. Construction of the TRISO-X Fuel Fabrication Facility (TF3), is to begin this year, with commissioning and start-up expected as soon as 2025. The company has submitted a license application to the US Nuclear Regulatory Commission (NRC).

Triso fuel

The industrial park is not far from the Oak Ridge National Laboratory site where Triso-X parent company X-energy has already produced kilogram quantities of fuel through a public-private partnership.

The license application took about three years to develop, at a cost of almost $20 million.
The NRC’s review process is expected to take 24-36 months. TF3 would become the first 10 CFR 70 Category II licensed fuel facility in the USA.

The NRC review, and TRISO-X’s interactions with the regulator over this period, are part of X-energy’s cooperative agreement with the Department of Energy under its Advanced Reactor Demonstration Program (ARDP). Andrew Griffith, US acting assistant secretary for Nuclear Energy, said the licensing milestone is “a critical step” towards achieving the program’s goals.

X-energy, which is developing the advanced Xe-100 reactor, announced it will initially produce 8 tonnes of fuel per year – enough to support about twelve Xe-100 small modular reactors. TRISO-X aims to expand the facility’s capacity from its initial 8 tonnes per year to 16 tonnes year by the early 2030s.

TF3 will use uranium enriched to less than 20% U235 to manufacture nuclear fuel products for a variety of advanced and small modular reactors, plus speciality fuels for space nuclear projects. The commercial facility’s cross-cutting design will enable manufacturing of fuel for other types of advanced or small nuclear reactors the need to use TRISO fuel.

3.31_HALEU Overview_742x960TF3 will also be used to continue to support government funded projects, such as mobile reactors for the military or space nuclear projects. TRISO-X is already operating two facilities at Oak Ridge: the TRISO-X Pilot Facility, located inside Oak Ridge National Laboratory, and the TRISO-X Research and Development Center in the Centrus Technology Manufacturing Center. TF3 is projected to generate more than 400 jobs in the Oak Ridge area and attract some USD300 million of investment.

TRISO – tristructural isotropic – fuel particles consist of a “kernel” of uranium oxycarbide (or uranium dioxide), surrounded by layers of carbon and silicon carbide, giving a containment for fission products which is stable up to very high temperatures. Fuel for

X-energy’s Xe-100 high temperature gas-cooled modular reactor consists of spherical “pebbles” each embedded with 18,000 TRISO particles. Each fuel pebble is about the size of a billiard ball – around 6cm in diameter.

& & &

Third Way – Developing Domestic HALEU Supply Spells Freedom from Russian Dependency

Key Takeaways

3rd way haleuRussia is currently the world’s only viable commercial supplier of high-assay low-enriched uranium (HALEU), the necessary fuel for many advanced nuclear power reactors rapidly emerging in the United States and the rest of the world.

Russia’s global monopoly on HALEU has been a serious concern for years, but the Russian invasion of Ukraine has highlighted the acute political risks and moral objections of relying on Russian HALEU supply. Third Way Report PDF file

Background to the Report

The US faces a major problem to achieve success with its efforts to design and commercialize advanced nuclear reactors. They will need high assay low enriched fuel (HALEU) , which is in the range of 5%-to-19% U235. Until recently, US firms got their from Russia which fabricated HALEU fuel elements and assemblies by downblending highly enriched uranium retrieved from decommissioned nuclear weapons.

That relationship is gone as a result of Russia’s unprovoked invasion of Ukraine and the sanctions that have been placed on that country by the US and its NATO allies. The war in Ukraine has highlighted the “acute political risks and moral objections of relying on Russian HALEU supply,” as Third Way experts Alan Ahn and Ryan Norman write in a memo that demonstrates how developing HALEU in the US is critical to America’s leadership in nuclear energy.

“Developing a domestic capacity to manufacture HALEU fuel would make the U.S. more competitive in a fast-emerging area of the energy economy. It would also help re-establish American global leadership in nuclear energy, helping us meet our climate, clean energy, national security, and economic goals.”

Last month, the DOE’s HALEU program received $45 million from Congress in the FY2022 omnibus, an increase from the amount included in the Energy Act of 2020, but much more will be needed to fully fund the program’s activities.

Currently, the only federally funded supplier in the US, Centrus, based in Piketon, Ohio, employs 200 people. A commercial-scale-plant could provide good-paying jobs in local communities in the coming years.  The memo lays out the case for US leadership and policy recommendations to help achieve those goals.

& & &

Nuclear Innovation Alliance (NIA) Publishes A New Report on HALEU

nia coverThe Nuclear Innovation Alliance (NIA) has released a new report, “Catalyzing a Domestic Commercial Market for High-Assay, Low-Enriched Uranium (HALEU).”  (PDF file) This new publication describes the challenges and opportunities associated with development of a domestic commercial HALEU market and identifies potential policy options that can be used to catalyze market development.

It presents the changing near-term, mid-term, and long- term supply and demand conditions that must be included when developing federal programs to accelerate commercial market development.

NIA Executive Director Judi Greenwald highlighted the relevance of this work to ongoing efforts to create a reliable and robust fuel cycle for advanced reactors:

“A robust commercial market for High-Assay, Low-Enriched Uranium (HALEU) is critical to the successful deployment of advanced nuclear energy. A domestic supply of HALEU would help ensure fuel availability for advanced reactors and facilitate long-term investments in advanced nuclear energy. This report outlines the challenges and opportunities inherent in jumpstarting a domestic supply of fuel critical to the future of advanced reactors in the U.S.”

“Federal investment in HALEU fuel availability can kickstart market development and incentivize companies to make fuel cycle infrastructure investments to support the more rapid deployment of advanced nuclear energy. This work outlines the different policy options that can be used to meet the needs of HALEU fuel cycle stakeholders while providing the assurances needed to support the successful deployment of advanced reactors as a climate solution. We believe that these options can inform policymakers and the Department of Energy as they work to develop HALEU fuel availability programs.”

& & &

Sen Manchin (D-Wv) Sen Risch (R-Id) Introduce The International Nuclear Energy Act Of 2022

Bipartisan legislation will promote the safe, secure and peaceful use of civil nuclear energy by reducing China and Russia’s influence on other nations’ civil nuclear energy programs. It is the  The International Nuclear Energy Act Of 2022

Short List of Intended Outcomes:

  • Establish an Office to coordinate civil nuclear exports strategy; establish financing relationships; promote regulatory harmonization; enhance safeguards and security;
  • Promote standardization of licensing framework; and create an exports working group.
  • Create programs to facilitate international nuclear energy cooperation to develop financing relationships, training, education, market analysis, safety, security, safeguards and nuclear governance required for a civil nuclear program.
  • Require two biennial summits, one focused on nuclear safety, security and safeguards, and another for civil nuclear vendors to enhance cooperative relationships between private industry and government.
  • Establish a Strategic Infrastructure Fund Working Group to determine how to best structure a Fund to finance projects critical to national security.
  • Create fast-track procedures for deemed civil nuclear exports for countries defined by the Secretary of Energy.
  • Expand the Export-Import Bank program on Transformational Exports to include civil nuclear facilities and related goods.
  • Create the U.S. Nuclear Fuels Security Initiative to reduce and eventually eliminate reliance on Chinese and Russian nuclear fuels.

To view the full text of the International Nuclear Energy Act, please click here.

Statement from Sen Manchin: “Our bipartisan bill establishes an Office for Nuclear Energy Policy to engage with our allies and industry partners to offset Chinese and Russian influence and reduce our reliance on nuclear fuels from these and other adversarial nations. I urge my colleagues on both sides of the aisle to support this critical legislation to help strengthen our energy security and further deny any nation the ability to weaponize energy against us and our allies.”

Statement from Sen Risch: “Russia’s brutal invasion of Ukraine has only highlighted the importance of energy security. This bill takes significant steps to re-establish American leadership in nuclear energy, both at home and abroad, which is critical to ensuring the security of energy supplies for ourselves and our allies, global standards for nonproliferation and other national security interests, and economic growth.”

& & &

Samsung and Seaborg Plan Molten Salt Floating Nuclear Power Barges

(WNN contributed to this report) South Korea’s Samsung Heavy Industries is forming a partnership with Seaborg, a Danish start-up pursuing next-generation nuclear technologies, Together they plan to develop floating nuclear power plant barges using a compact Molten Salt Reactor (CMSR) technology developed by Seaborg.

seaborg flog molten
They believe the CMSR barges can be commercialized as an efficient power source in response to climate change and also can be harnessed to power the green production of hydrogen and ammonia.

Seaborg’s design is for modular CMSR power barges that can produce between 200 MWe and 800 MWe of electricity. The CMSR’s fuel is mixed in a liquid salt that acts as a coolant, which means that it will simply shut down and solidify in case of emergency.

The strategic partnership envisions a floating nuclear power plant that will be produced for customers as a turn-key product ready to be moored in an industrial harbor. Once floated to its mooring position in the harbor, a transmission cable will be connected to the electric grid onshore. The reactor and the barge will have a 24-year lifetime and be cost-competitive with other power solutions. When its service life is over, it will be towed away for decommissioning and replaced with a new plant.

Samsung said that it plans to develop an 800 MWe model of the floating reactor power plant within the next year by working with Seaborg. The firm will also conduct classification certification and develop commercial marketing plans. The timeline for Seaborg, which was founded in 2014, has been for commercial prototypes to be built in 2024 with commercial production of Power Barges beginning from 2026.

In the second phase of the partnership, Samsung plans to expand the development and marketing to link the floating power plants with the development of hydrogen and ammonia production facilities. The stable production of energy also offers a fundamental basis for the production of all Power-2-X fuels, where especially hydrogen and ammonia are considered a future energy source to replace traditional fossil fuels, said Seaborg.

The concept is to place a hydrogen or ammonia production plant next to the floating nuclear power plant, utilizing the CO2-free fission energy to produce hydrogen and ammonia. The design of the hydrogen, ammonia, and power units will be optimized for efficient serial construction at Samsung’s shipyards.

& & &

Space Allocated at Temelín for Future SMRs

(WNN) CEZ has set aside an area at the Temelín Nuclear Power Plant as a potential location for the Czech Republic’s first small modular reactor (SMR). It says the site will not impact on plans to build two more large-scale units.

ČEZ signed a Memorandum of Understanding on SMRs with NuScale in  2019.  It also has cooperation agreements with GE Hitachi, Rolls-Royce, EDF, Korea Hydro & Nuclear Power and Holtec. Clearly, CEZ has not made up its mind which vendor has the best technology or the best deal.

The Czech Republic has six nuclear reactors – including two at Temelin – generating about one-third of the country’s electricity. With three new reactors planned, including two at Temelin, the aim is for nearly 60% of the country’s electricity to be from nuclear. A tender for a new 1200 MWe PWR at Dukovany was released last month.

Small modular reactors are defined by World Nuclear Assocation as generally 300 MWe equivalent or less, designed with modular technology using mobile factory fabrication, pursuing economies of series production and short construction time.

& & &

Polish Mining Company KGHM Seeks Partnership with Romania’s Nuclearelectrica

Polish metal mining company KGHM is preparing to enter into a partnership with Romania’s nuclear company Nuclearelectrica focused on development of small modular nuclear reactors (SMR).

“Small nuclear reactors are one of KGHM’s priorities. Romania is a country that has been developing SMR projects and has been using nuclear energy for 30 years. We are initiating cooperation with Nuclearelectrica, a meeting with the Secretary of State for Energy, and a visit to the Cernavoda,” said the president of the Polish company, Marcin Chludzinski.

KGHM is a copper and silver producer with about EUR 5 billion in annual revenues.

In November, the US company NuScale, majority controlled by the Texan industrial conglomerate Fluor Corp., signed an agreement with Nuclearelectrica, the state operator of the Cernavoda nuclear power plant, under which Romania could develop the first plant based on small modular nuclear reactors in Europe.

Separately, several other Polish firms in the chemicals and also the mining sectors are pursuing deals to develop SMRs.

& & &

UK’s First Light Fusion Announces Fusion Breakthrough

First Light Fusion (First Light), the UK based University of Oxford fusion spin-out, announced that it had achieved fusion and the UK Atomic Energy Authority (UKAEA) independently validated the result. This is the first time fusion has been achieved using the unique targets developed by First Light, and the corresponding projectile technology.

To deliver this fusion result, First Light used its large two-stage hyper-velocity gas gun to launch a projectile at a target, containing the fusion fuel.

flash“The projectile reached a speed of 6.5 km/sec (23,400 km/hr) before impact. First Light’s highly sophisticated target focuses this impact, with the fuel accelerated to over 70 km/sec as it implodes, an increase in velocity achieved through the firm’s proprietary advanced target design, making it the fastest moving object on earth at that point.”

First Light’s power plant design involves the target being dropped into the reaction chamber and the projectile launched downwards through the same entrance, so it catches up with and impacts the target at the right moment.

The impact is focused and amplified by First Light’s advanced target technology, and a pulse of fusion energy is released. That energy is absorbed by the lithium flowing inside the chamber, heating it up. The flowing liquid protects the chamber from the huge energy release, sidestepping some of the most difficult engineering issues in other approaches to fusion. Finally, a heat exchanger transfers the heat of the lithium to water, generating steam that turns a turbine and produces electricity.

First Light’s equipment is relatively simple, built in large part from readily available components. First Light believes this approach accelerates the journey towards commercial fusion power as there is a large amount of existing engineering that can be reused to realize its proposed plant design.

A peer reviewed analysis  conducted by First Light shows that projectile fusion offers a pathway to a very competitive Levelized Cost Of Energy (LCOE) of under $50/MWh, directly competing on cost with renewables. First Light said it has achieved fusion having spent less than £45 million ($58.5m).

UK Business & Energy Secretary, Kwasi Kwarteng, said: “First Light Fusion’s British-born technology could potentially revolutionize power production in the coming decades. That is why this government is investing in UK science and innovation, ensuring that we remain at the forefront of the global scientific endeavor to make safe, clean, limitless fusion energy a reality.”

First Light is working towards a pilot plant producing around 150MWe and costing less than $1 billion in the 2030s. First Light is working with UBS Investment Bank to explore strategic options for the next phase of its scientific and commercial development.

First Light Chairman Bart Markus said: “Fusion must show it is more than an expensive science experiment, but that it can be a commercial solution to the challenge of producing baseload clean energy.”

# # #

Posted in Nuclear | 1 Comment

How Energy Security is a Driver of Climate Policy

  • How Energy Security is a Driver of Climate Policy
  • Q&A with IP3’s Michael Hewitt
  • Bulgaria Faces Energy Choices
  • A Greek New Deal
  • UK Pursuit of Energy Security and Climate Policy
  • Poland Goes Private for SMRs
  • DOD Work on SMRs will Benefit US Developers
  • Energy Security for HALEU Nuclear Fuel


It is no secret that China and Russia use their exports of commercial nuclear reactors as tools of statecraft. By offering very favorable financial terms to build light water nuclear reactors in nations such as India, Turkey, Egypt, Bangladesh, and Pakistan, the two authoritarian nations simultaneously link energy security and climate policy commitments while also drawing these nations closer into their respective spheres of geopolitical influence.

Not biting the hand that is building new nuclear reactors at bargain basement rates is the result even when that hand is involved in reprehensible behaviors. A case in point is India which has abstained from criticizing Russia for its invasion of Ukraine.

Why? The answer is found in the two 1000 MWe VVERs commissioned at Kudankulam, the two more that are under construction, and the two additional units planned for that site. Another six units, at 1200 MWe each, are on the drawing boards in Andhra Pradesh for a site on India’s east coast. By comparison, firms from western nations have been effectively locked out of India’s nuclear energy market by a so-called “energy security law” which was promoted by India’s coal mining interests.

Russia solves the problem of “EPC risk” for India, and other “customers,” by covering all the costs of building a massive full size reactor no matter what. The reason is that Russia isn’t in a conventional business relationship with its customers, even though, as in Finland, they make it look that way. Russia’s interest is focused on statecraft. Russia doesn’t count EPC costs the way the Finnish government or any other western nation committed to a capitalist economy adds up the numbers.

China is committed to the same paradigm in its decision to build two 1000 MWe Hualong One PWR type reactors in Pakistan. Recently, Argentina asked China to assume the full $8 billion cost to build a new reactor. It believes, based on China’s past disregard for EPC risk in favor of statecraft, that it will get it.

In the middle of this globally significant change is the key question of what is the U.S. going to do to re-asset its role in the global nuclear industry and win hearts and minds in the process without breaking the bank? Publicly traded companies, and their private equity counterparts, are in the pursuit of profits not statecraft.

  • The Linked Futures of Energy Security and Climate Policy

In an article published in the National Interest titled, “Energy Sovereignty Will Be the Westphalian Principle of the 21st Century,” David Gattie, Associate Professor of Engineering at the University of Georgia and Michael Hewitt, RDML (ret) U.S. Navy, Co-Founder and CEO of IP3 Corporation make the case that energy security has to travel hand-in-hand with climate policy.atoms-for-peace_thumb.png

The central premise of the article is that “Energy Sovereignty” will be the “Westphalian Principle” of the twenty-first century. It will be driven by the need for abundant, baseload, and clean energy. It will show that nuclear power (as Eisenhower projected) will be critical to energy sovereignty. The paradoxical danger of over commitment to clean energy, aka “renewables”, will be diminished even if its advocates create more sound and fury than they can justify in terms of delivered decarbonization of major industrial sectors.

According to the two authors, energy as the currency of the twenty-first century, just like oil in the twentieth century, is starting to dominate decision making by European elected officials, technocrats in major corporations, and asset managers at investment funds.

What’s new, Gattie and Hewitt say, is that the unprovoked invasion of Ukraine by Russia has flipped the coin for Europe in terms of how to achieve energy security and decarbonization of its industrial and consumer use of energy.

They say an opportunity is at hand that can be leveraged to advance America’s efforts to revitalize its civilian nuclear enterprises and compete once again on the world stage. Their view is that the West needs to step up to the geopolitical plate, and sooner rather than later, along with its most recent COP26 commitments, to address climate change.

Q&A with IP3’s Michael Hewitt

Recently, IP3’s Michael Hewitt agreed to talk with this blog about what his firm is doing to develop sustainable energy and energy security infrastructure via public/private initiatives and industry-led partnerships.

Hewitt says that IP3 is hanging its hat on small modular reactors (SMRs) because they reduce EPC risk due to their size at less than 300 Mwe. While the firm is not tied to any particular vendor, Hewitt is bullish on the fact that SMRs also reduce capital requirements per unit.

The apparently indifference of the U.S. to this trend over time has been caused in part by the fact that nuclear reactors here are built with private capital and cannot compete with the subsidized financing of state-owned enterprises from Russia or China.

Hewitt says the SMR is the game changer for energy security, and is the conceptual blockbuster for both energy security and climate policy. The firm’s work in Bulgaria and Poland illustrates how a strategy of moving from coal to nuclear energy meets objectives for energy security and climate policy in a free market context.

He points to recent experience in Bulgaria and other nations that are examples that can be brought home to the US and offer an example for other western nations seeking to break the current dominance of state-owned enterprises globally on new nuclear reactors projects.

Bulgaria Faces Energy Choices

Recently IP3 inked an MOU with the Bulgarian energy ministry to support low-carbon solutions. The objective is to support an innovative commercial plan focused on energy security and to decarbonize baseload residential and industrial energy processes. The MOU addresses project inception, development, financing, and operations.

The priority is to attract private capital and energy companies, including nuclear, to Bulgaria. For this work IP3 is working with a partner Gemcorp Holdings (GHL) which is based on London, and which focuses on emerging markets.

Bulgaria’s energy security issues in the nuclear sector are legacies of the status of the nation’s emergence from being behind the Soviet Union’s iron curtain. Two relatively small Russian built VVERs that entered revenue service in the early 1980s provide the bulk of the nation’s (31%) current CO2 free electrical power according to the IAEA. Another 44% of electrical power is provided by coal.

  • Bye Bye Belene

An effort by the Bulgarian Energy Ministry to complete a partially built Russian 1000 MWe VVER nuclear power generating station at the Belene site did not proceed despite significant interest from Western nuclear vendors.

According to the World Nuclear Association, August 2012 Bulgaria’s EPC awarded a contract to Westinghouse Spain to assess the feasibility of two options: a VVER unit using Russian equipment already procured, but with instrumentation and control systems and fuel from Westinghouse, and a turbine-generator from Toshiba; and construction and operation of a western 1000-1200 MWe PWR, essentially it could be when completed a Westinghouse’s AP1000.

In September 2012 Rosatom said that it would not cooperate with the Westinghouse Spain evaluation and escalated its claim to €1 billion to encourage a purely Russian outcome for Kozloduy 7. The claims were settled for €620 million in compensation for the already-produced primary cycle equipment for Belene units 1&2. The Belene project was subsequently abandoned by Bulgaria.

  • SMRs Would Be a Better Buy for Bulgaria

Going forward IP3’s Hewitt says that small modular reactors may be a better solution for Bulgaria in the near term than trying to build more full-size reactors with their decades long development timeline. A key objective could be for SMRs to provide process heat for district heating which currently relies on coal-fired steam plants. There are additional opportunities besides generation steam and electricity.

“A lot of institutional investors are looking at the potential for ‘hybrid energy’ projects that engage nuclear energy and renewables. Because this focus is not just on generating electricity, they see new revenue opportunities for process heat and production of hydrogen.”

More importantly, Hewitt says, the combined drivers of energy security and climate policy have focused the interest of these investors on fleets of small modular reactors (SMRs) rather than “one off” projects.

Hewitt and Gattie write in their National Interest essay, “A central problem for the private U.S. nuclear sector is cost competitiveness for the current nuclear fleet and for new construction. For currently operating reactors, natural gas and subsidized renewables are oftentimes less expensive at the margins. Moreover, high capital costs for large nuclear power plants are disincentives to attracting investment dollars for such long-term projects. SMRs offer lower construction costs and shorter construction schedules. But, without a demand for SMRs and a book of business, economies of scale will remain elusive and costs will remain high.”

In other words, whereas in the past Russia would have absorbed the EPC risk of building 1000 MWe PWRs in Bulgaria, now, with lower risk for SMRs, western investors can enter the game of financing them to replace coal plants securing energy supply and decarbonizing district heating among other uses.

“SMRs provide confidence in the area of EPC risk, Hewitt says.

“The era of exclusively building large nuclear power plants is over. SMRs represent a great opportunity to create an entire industry (for fleets of them) along with the manufacturing and supply chain firms.”

Hewitt cautions that to build a fleet of SMRs requires creating an order book that in turns creates predictive demand for suppliers who can then invest in manufacturing capabilities to build these reactors. Raising the first $1 billion in capital for innovative energy projects in Bulgaria is one IP3’s key objectives.

A Greek New Deal

Bulgaria’s next step in its pursuit of energy security and climate policy objects is represented in recent talks with Greece to build SMRs in Bulgaria and sell some of the electrical output across their long common southern border with Greece.


Bulgaria’s Energy Ministry recently announced the effort. It said the two countries are starting a feasibility study, in cooperation with Greece, on a shared nuclear power project that could help the two countries overcome Greek dependence on Russian natural gas. Greece has no plans to build its own nuclear power plants of any size due to its seismic profile.

Facilitating the effort is a new, second, overhead 400 kv electric line will soon connect Greece and Bulgaria. This new interconnection line between the substations Maritsa East in Bulgaria and Nea Santa in Greece will be approximately 150 km (93 miles) long.

The nuclear project still has a long way to go. The fact that these discussions are taking place is another indication that innovation in energy project design is a crucial element in achieving energy security to meet climate goals.

UK Pursuit of Energy Security and Climate Policy

Other nations are linking energy security and climate policy Hewitt says. He points to the development of mid-size (470 Mwe) PWRs by Rolls-Royce in the UK which plans to build a fleet of 16 of them completing the task by the mid-to-late 2030s.

“Rolls-Royce has a clear opportunity,” Hewitt says. He adds that Exelon, now branded as Constellation, has partnered with Rolls-Royce and that it is reasonable to assume that its objective is to be the utility operator of the Rolls-Royce Fleet.

Hewitt points to a recent development in the UK which will help progress for the fleet size project is that the UK Parliament has passed the RAB method of financing new nuclear power projects. Like the CWIP method in the US, it pays for the cost of construction based on key milestones of progress. The method saves money by avoiding the interest carrying costs of having to wait for reimbursements until each reactor enters revenue service. For a full size, 1000 MWe or larger reactor, these savings are substantial.

Rolls-Royce’s confidence in the new financial plan is indicated by the fact that it recently submitted its 470 MWe PWR design to the UK government’s Office of Nuclear Regulation (ONR) to complete the Generic Design Assessment (GDA). The decision is not taken lightly. The GDA takes about four years. It is famous for being both complicated and costly. The regulatory review, if successful, will effectively allow Rolls-Royce to proceed with its plants to build the fleet.


In the UK Prime Minister Boris Johnson recently announced a plan to significantly boost the nation’s commitment to nuclear energy by setting a target of having 25% of the country’s electricity provided by fission power within the next few decades. The Rolls-Royce fleet could easily help meet that part of that overall objective. The planned 16 units, at 470 Mwe each, would create 7.5 GWe of electrical power exceeding the combined ratings of the now sidelined Wylfa, Oldbury, and Moorside projects.

Poland Goes Private for SMRs

Another nation where Hewitt and his colleagues at IP3 are working is Poland. There the impetus for SMRs is with private industry. The firm is an advisor to Polish giant ZEPAK. IP3 will work with its client to put together an implementation plan that will address key financial and regulatory milestones.

Hewitt says that this project is an example of a highly industrialized country using current technologies to simultaneously work towards energy security, e.g., less use of Russian natural gas for industrial process heat, and meeting climate policy objectives, e.g., CO2 emission free energy. It will also help ZE PAK reduce its use of lignite which is the most polluting form of coal.

ZE PAK plans to invest in four-to-six SMRs (GE-Hitachi BWRX-300) to be built at a power plant located in central Poland. The firm’s decision to focus on the BWRX-300, Hewitt says, has been bolstered by an unrelated decision last December by Canada’s Ontario Power Generation (OPG) to select the SMR for a first-of-a-kind (FOAK) plant at its Darlington, Ontario site.

“A government decision to select a vendor is always a confidence builder,” Hewitt says. “It shows that a utility has decided that an SMR can pay and that the market is here for them.”

  • Leveraging SMRs Strategies via the 3 Seas Initiative

Poland’s experience is seen by 12 other European nations as a bellwether change in a path forward to simultaneously address energy security and climate policy. In this case the change process is funded in part by the US State Department along with the12 member nations who are supporting the 3 Seas Initiative.


The State Department effort to support the 3 Seas Initiative will strengthen international collaboration between the US and the 3 Seas 12 partner countries seeking to deploy nuclear energy as part of their clear energy initiatives. This cooperation includes supporting the deployment of advanced nuclear technologies, including small modular reactors (SMRs).

IP3 Board member Georgette Mosbacher, former US Ambassador to Poland, is part of a leadership team at the Atlantic Council which is spearheading an effort by the Council to support the 3 Seas initiative.

According to the Atlantic Council, “Its objective is to see that Europe that is undivided, free, prosperous, and secure. This (Atlantic Council) leadership team will intensify the Council’s effort to catalyze new investments in Central Europe and the Baltic States and bolster US engagement in the region.”

“The Three Seas is a unique and transformational initiative launched and led by some of America’s closest allies. It is all about completing Europe.” Mosbacher said.

Department of Defense Work on SMRs will Benefit US Developers

Programs to procure micro-reactors and SMRs by the Department of Defense through Project Pele and the US Air Force “is a signal of the importance of energy security for the nuclear industry,” Hewitt says.

Hewitt, and his co-author Gattie write, “By including SMRs as a necessary technology in its long-term energy security and climate strategy, the U.S. DOD can create a strong demand signal that would, in turn, lead to the development of an efficient nuclear supply chain and, eventually, lower costs. This not only benefits U.S. military, it also benefits the U.S. civilian nuclear sector as SMRs become an economically viable option that invites private capital.”

DOD’s planned Project Pele micro reactor might fill the bill. It is designed to fit inside of a 20-foot shipping container, will be able to produce one-to-five MWe of power for three-plus years, and offer two million times the energy density of diesel fuel. The Department of Defense is requiring that the deployed version of the micro unit be capable of being fully transportable in semi-truck, can be set up at any remote site in three days, and be able to be disassembled and moved in seven days.


“DOD’s commitment to pursue these types of reactor designs will definitely have a spillover effect that will benefit the civilian nuclear industry,” Hewitt says.

“The DOD investment will spur supply chain investment which will be available for civilian developers of SMRs, and it will create opportunities for exports.”

Energy Security for HALEU Nuclear Fuel

Some of these DOD and civilian SMRs will burn high assay low enriched fuel (HALEU) (video) which until recently was only available from Russia which down blended it from highly enriched uranium (HEU) stocks. HALEU is enriched uranium at 5%-19% U235. By comparison, weapons grade bomb materials have enrichment levels of 80% U235 or higher.

Right now, Hewitt says, aside from breaking free of Russia’s grip on the supply, the firms in the US nuclear industry that will need HALEU are facing a ‘chicken-and-egg” paradox. In fact, it is their number one ‘keep awake” issue for their CEOs.

Fuel fabricators want to know that there will be demand for HALEU, that is, that SMRs with this type of fuel requirement, will be built in fleets, not just first-of-a-kind prototypes, to justify the huge investments in nuclear fuel cycle facilities. Reactor developers want to know that their plans for just in time delivery for fuel for their go to market timelines for their SMRs will be met. In this case advanced designs include HTGRs, MSRs, sodium cooled units, etc.

NEI HALEU timelines

Image: “Establishing a High Assay Low Enriched Uranium Infrastructure for Advanced Reactors Prepared by the Nuclear Energy Institute, January 2022:

Hewitt says this is an opportunity for the federal government to step in to simultaneously address energy security and climate policy. By asking Congress to fund production of HALEU fuels for domestic use, the paradox goes away. Advocates from the nuclear reactor development community, along with DOE, would need to engage the energy and national security authorization and appropriations committees to make this happen.

In December 20, DOE issued a Request for Information (RFI) for public input on its planned program to ensure domestic availability of HALEU for the U.S. fleet (responses to DOE’s RFI are due on February 14, 2022). The Energy Act of 2020 authorized DOE to establish a program for domestic sourcing of HALEU for research, development, demonstration, and commercial use. DOE is now reviewing the input it got from its RFI. The agency has $45 million for HALEU work in 2022, but this is a drop in the bucket for the scope of fuel facilities commitments that are likely to emerge by the end of this decade if not sooner.

The security issue of having been dependent on Russia, which is now a heavily sanctioned international pariah, is resolved and developers of CO2 emission free power can be confident the fuel will be available to go to market with their designs.

“We know how to make it,” Hewitt says, “We just have to do it.”

# # #


Posted in Nuclear | 1 Comment

Opinion – A New Hope for the Versatile Test Reactor

vtr logo

A lot in terms of US energy security and its impact on climate policy is riding on what backers of the Versatile Test Reactor (VTR) would do with a proposed $45 million sitting as a line item in the DOE Budget proposal for FY 2023. Page 73 of the 143 page summary of the FY 2023 budget contains the line item which is significant after Congress zeroed out all funding for the VTR in the FY 2022 appropriation.

The request comes after several previous requests for five to six times that amount were rejected by Congress. An appeal by DOE in late Fall 2021 to reverse the decision for the 2022 appropriation failed to move the needle with the Senate Appropriations Committee.
The fact that DOE requested, and the Office of Management and Budget (OMB) approved, the request for a paltry $45 million, which in a town that measures progress in trillions of dollars, is basically ‘walking around money,’ is that it is a not to be missed opportunity to make up for lost time.

The new money, if approved by Congress, offers backers of the VTR an opportunity to make a case for it amid a radically and rapidly changing landscape in Europe in terms of demand of advanced test reactor capabilities.

DOE nuclear energy 2023

The Russians are Coming for Lunch – Ours

Until recently, Russia was scooping up future market share for testing advanced reactors, and having a big piece of the resulting intellectual property that results from it, especially in Eastern Europe, with its rapid work to build a similar test reactor, the MBIR, and align it with a national laboratory type nuclear research facility.

Rosatom, the Russian state nuclear corporation, has been promoting the use of its multi-purpose fast neutron research reactor (MBIR) which is under construction at the Research Institute of Atomic Reactors (NIIAR) in Dimitrovgrad in the Ulyanovsk region of Russia, located about 1,600 miles east of Moscow. The state owned enterprise is hawking its capabilities and soliciting partnerships on an international scale.

It is creating an International Research Center (IRC) to be a home for cooperative R&D and test projects. According to the June 2020 Rosatom briefing, four nations have signed up so far – the Czech Republic, Hungary, Poland, and Slovakia

The briefing says these arrangements, and others like it, will support the IRC’s ambitions to become a world class center of excellence for testing materials to be used in fast neutron reactors. The purpose of the MBIR construction effort is to have a high-flux fast test reactor with unique capabilities which are very much in competition with the proposed VTR.

Russia’s Loss Could Be VTR’s Gain

Had Russia not invaded Ukraine, and made itself an international pariah, the absence of a VTR in the US would have, de facto, ceded a huge chunk of testing work for advanced reactors to Russia, and shortened their time to market for them, along with a big fat Russian imprint. The impact on US energy security, and potential loss of export sales of advanced reactors, as well as hits on supply chain jobs at home, and the other benefits of robust energy security,, all were slated to evaporate in the mist of Congressional myopia about the role and importance of the VTR in advancing the US nuclear industry.

International sanctions brought against Russia by the US, UK, and EU nations, are penalties imposed with the objective of stopping that country from acting aggressively, or breaking international law. So far, they have had little effect on Russia, but their influence has been significant in terms of cutting off essential trade. Even Chinese natural gas companies have suspended plans for a Siberian energy project due to the imposition of sanctions Russia.

Now that no one in the EU is going to touch a Russian test reactor with a ten-foot pole, the $45 million in funding the backers of the VTR might get, or more, if Congress wakes up, can be used, among other things, to build an well constructed energy security / climate policy case to use the VTR to pursue and book the testing projects of US and European developers of advanced reactors who otherwise might have set their sights on using the MBIR.

It is market share sitting on the table waiting for the VTR to pick it up. More importantly, it is crucial opportunity, in terms of U.S. presence in the global nuclear industry, to advance its interests in terms of energy security and climate policy.

It is an unexpected jackpot opportunity to take the testing market share the Russians have left on the table and bring it to the Idaho National Laboratory (INL). If that plan can be executed, it could potentially cement the VTR’s role in terms of testing capability and support for US developers of advanced reactors, on a global basis, for years if not decades to come.

vtr and ardp

To get there backers of the VTR have to get clear of their feelings of rejection and put pedal to the metal for an all out push to restore funding for the project and to build it as quickly as possible. The organizational ground work has been done. Now is time to leverage it.

This is no time for half measures. My advice to INL, the Department of Energy, and its partners on the VTR, is to set up a presence in Washington, DC, and use some of that $45M to pay for a world class plan to convince Congress that U.S. energy security depends on building the VTR. If they don’t do it, the US will pay a steep price in terms of degraded global nuclear energy security which will impose a price far greater than the cost of building the reactor. Congress needs to get in the picture with advocacy in the House and Senate by energy related committees and for the national security interests of the nation.

# # #

Note to Readers: This post was written before confirmed reports were published by western news media and human rights organizations about atrocities in Ukraine carried out by Russian military troops. While emotional responses to the horror of these reports is inevitable, reactions based on rational foreign policy need a more sober basis for action. Russia’s isolation from commerce with the EU and other nations is likely to intensify as a result. The US and EU countries are expected to impose additional and, likely long lasting, sanctions on Russia in the coming days and some of them will address Russia’s reliance on energy exports.

Posted in Nuclear | Comments Off on Opinion – A New Hope for the Versatile Test Reactor

Westinghouse Gets CAD27.2M for eVinci Micro Reactor

Note to Readers

energoatom logoFor the latest news on nuclear energy issues in Ukraine sign up to receive the newsletter of the American Nuclear Society Rapid Response Taskforce

It has updates on the status of nuclear facilities impacted by the Russian invasion of Ukraine. Also, the International Atomic Energy Agency at is publishing periodic bulletins. For background see World Nuclear News – ” A Guide to Nuclear Power in Ukraine 

  • Westinghouse Gets CAD27.2M for eVinci Micro Reactor
  • Canada / Four Provinces Announce Ambitious Plans For SMRs

Westinghouse Get CAD27.2M for eVinci Micro Reactor

cad logoThe Canadian Ministry of Innovation, Science and Industry has granted Westinghouse Electric Canada CAD27.2 million (USD21.5 million) to support further development and progress towards licensing of its eVinci micro reactor

In an email statement, a ministry spokesperson said that the investment will support funding for the development and eventual licensing of the eVinci micro-reactor. The spokesman said the grant was made because smaller size of the reactor design will result in a more accessible, widespread, and transportable nuclear source of energy with additional security and regulations to ensure its safety.

The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, announced the investment of CAD27.2 million in Westinghouse Electric Canada, inc., to support its $57 million project so that its next-generation SMR, the eVinci micro-reactor, can be successfully licensed in Canada. The advanced reactor is designed to be transportable in two standard size shipping containers.

He said, “This technology has the potential to provide a more accessible and transportable source of low-carbon energy.”

“By investing in this project, the Government of Canada is supporting innovation that will help communities that rely on heavy-polluting diesel fuel to transition to a cleaner source of energy, while creating and maintaining more than 200 well-paying and full-time jobs in Canada’s energy sector.”

Eddie Saab, President, Westinghouse Electric Canada, welcomed the decision to fund the firm’s work towards licensing the design in Canada,

The federal contribution is being made through the Strategic Innovation Fund’s Net Zero Accelerator initiative, which is a program designed to attract and support high-quality business investments across all sectors of the economy.

net zero banner

The ministry said in a press statement that Westinghouse Electric Canada’s project supports the government’s Innovation and Skills Plan by helping build a highly skilled workforce and advancing research in new foundational technology—a key component for future economic growth and innovation. It also supports Canada’s SMR Action Plan, which outlines a long-term vision for the development and deployment of this technology in Canada and worldwide. (YouTube video)

The Ministry said that the grant is based on a cost reimbursable method. In an email statement it said,

“The proposed reactor technology is expected to be cost-competitive to operate and will provide a low-carbon source of electricity for applications like off-grid industrial sites. This contribution is reimbursed based on costs incurred by the company, ensuring that government support is provided as the company successfully completes the project.”

Nuclear Engineering International reported that Canada’s SIF fund has previously made grants to two SMR projects: a CAD 20 million investment for Terrestrial Energy to accelerate development of its Integral Molten Salt Reactor and CAD 47.5 million to Moltex Energy to help develop its 300MWe Stable Salt Reactor-Wasteburner (SSR-W) technology.

Q&A With Westinghouse on Scope of Work for the Grant

A spokesman from Westinghouse provided email responses to questions about the scope of work.

What is the technical scope of work that Westinghouse will carry for in return for the CAD27.2 million in funding?

The scope is divided into multiple workstreams that support the work required for licensing and deployment of the eVinciTM micro-reactor. The primary scopes of work includes research, development and demonstration of micro-grid, remote monitoring system, installation platform design, and refueling. The award will also support Canadian supplier development and completion of the Vendor Design Review (VDR) process with the Canadian Nuclear Safety Commission (CNSC).

What are the expected deliverables associated with grant?

Westinghouse will create and maintain many new permanent jobs, partner with academic institutions, and commit to significant research and development spending in Canada.

What are the major milestones for doing the work and what is the overall schedule for completing it?

Each workstream has a set of key milestones to ensure integration with Westinghouse’s overall development plan as well as completion prior to the project end date. The overall project will be completed by March 31, 2026.

Also, in February 2018 Westinghouse submitted an application to the Canadian Nuclear Safety Commission (CNSC) for a combined Phase 1 & Phase 2 vendor design review (VDR). There is no other information. What is the status of the application and has any work on the VDR taken place, if so, what?

The application was initiated in 2018 and remains in-process. Finalization of the application is anticipated in the second quarter of 2022. Westinghouse is working with CNSC to establish a schedule for the combined Phases 1 and 2 VDR that is aligned with both organization’s resources. Westinghouse has initiated development of preliminary combined Phases 1 and 2 VDR work.

Status of eVinci at the CNSC

In terms of regulatory review at the Canadian Nuclear Safety Commission (CNSC), according to a reply to an email inquiry, the agency said the firm submitted an application in February 2018 for a combined Phase 1 & Phase 2 Vendor Design Review which is a pre-licensing process. However, the agency also said that there has been some recent activity.

“We have recently met with Westinghouse and continue to work on completing the service agreement. At this time, the status remains the same,” the agency said.

Five other Canadian small modular and micro reactor vendors have completed  Phase 1 of the Vendor Design Review.

SMR and Micro Reactors in Vendor Design Review at CNSC

  • Seven of 14 designs have reactor outlet heat values greater than 500 C. These designs are advanced reactors with longer times to market than light water designs.
  • Four of seven are HTGR; Three are molten salt
  • Seven of 13 designs are using either TRISO or HALEU fuel with U235 > 5%.
  • Testing and qualifying fuels, and buying  HALEU fuel in commercial quantities are key challenges for these developers.

process heat canada CNSC VDR

Status of eVinci at NRC

In the US in November 2021 Westinghouse submitted a regulatory engagement plan for the eVinci reactor to the Nuclear Regulatory Commission. In its cover letter, the firm said, “This plan is an update to the version submitted in January 2020 and covers the planned preapplication interactions with the NRC in support of future Westinghouse eVinci micro-reactor license.”

The plan includes information on the basic design of the e Vinci micro-reactor as well as the regulatory strategies envisioned including design, manufacturing, and transportation phases of deployment. According to the NRC, in a February 2022 update, said the eVinci design is between 200 kWe to 5 Mwe,

About the eVinci Micro Reactor

Key Attributes of eVinci Micro-Reactor: Fact Sheet

evinci reactor

  • Transportable energy generator
  • Fully factory built, fueled and assembled
  • Delivers combined heat and power – 5 MWe and up to 13MWt
  • 8+ years of full power operation prior to refueling
  • Target less than 30 days onsite installation
  • High speed load following capability
  • High reliability and minimal moving parts
  • Capable of autonomous operation
  • Near zero Emergency Planning Zone with small site footprint
  • No spent fuel or waste storage on site
  • Simplified decommissioning and remediation

Prior Coverage on this Blog:   Westinghouse Launches New SMR Effort

& & &

Canada / Four Provinces Announce Ambitious Plans For SMRs And New Class Of Microreactor

(NucNet)  A new strategy calls for Canada to become ‘world-leader’ in advanced nuclear technology. Four provincial governments are pushing ahead with a plan to develop nuclear power in Canada with calls for the federal government to back ambitious plans for small modular reactors (SMRs) and a new class of Generation IV micro-SMR for remote communities and mines.

The four provinces – Saskatchewan, Ontario, New Brunswick and Alberta –put forward the proposals in a strategic plan to expand the nuclear industry through the development of SMRs, saying they provide a source of safe, clean power. The provinces assert that Canada’s early adoption of SMRs would position the nation as a world-leader in new nuclear innovation and a global SMR technology hub.

The provinces are calling for a grid-scale SMR project of 300 MWe constructed at the Darlington nuclear site in Ontario by 2028 with subsequent units to follow in Saskatchewan.

Late last year OPG chose GE Hitachi Nuclear Energy as its technology partner on a new SMR planned for Darlington, with the first grid-scale BWRX-300 plant scheduled to be completed by 2028. It is a 300 MWe SMR based on the firm’s larger 1500 MWe BWR design.

The provinces want to see four advanced SMRs developed in New Brunswick and a new class of micro-SMR designed primarily to replace the use of diesel in remote communities and mines. A 5 MWe gas-cooled demonstration project is under way at Chalk River, Ontario, with plans to be in service by 2026.

The strategic plan builds on the provincial power utilities’ SMR Feasibility Study, requested by the provinces as part of the MOU, which concluded that SMR development would support domestic energy needs, curb greenhouse gas emissions, and position Canada as a global leader in clean technologies and the fight against climate change.

The strategic plan says Canada could become an exporter of global SMR technology for on-grid and off-grid applications. But it says there will need to be a strong nuclear regulatory framework that focuses on the health and safety of the public and the environment while ensuring reasonable costs and timelines.

It calls for federal government commitments on financial and policy support for new SMR technologies and “a robust nuclear waste management plan for SMRs”.

Key Elements of the SMR Plan

According to World Nuclear News, the plan identifies five priority areas for SMR development and deployment:

  • Positioning Canada as an exporter of global SMR technology by propelling three separate streams of SMR development, covering both on-grid and off-grid applications.
  • Promoting a strong nuclear regulatory framework that focuses on the health and safety of the public and the environment while ensuring reasonable costs and timelines.
  • Securing federal government commitments on financial and policy support for new SMR technologies that would lead to vast economic benefits across the country and help meet emissions reduction targets.
  • Creating opportunities for participation from Indigenous communities and public engagement.
  • Working with the federal government and nuclear operators on a robust nuclear waste management plan for SMRs.

The three separate streams of SMR technology development envisaged under the plan are:

Stream 1: A grid-scale 300 MWe SMR project to be constructed at the Darlington nuclear site in Ontario by 2028, followed by units in Saskatchewan with the first unit projected to be in service in 2034. Ontario Power Generation (OPG) has announced GE-Hitachi as the preferred technology developer for the Darlington SMR project, and early site preparation works have begun.

stream 1 pathway

Stream 2: Two fourth-generation, advanced SMRs to be developed in New Brunswick: ARC Clean Energy is targeting 2029 for its ARC-100 advanced sodium-cooled fast neutron SMR to be fully operational at the Point Lepreau nuclear site by 2029. Moltex Energy is aiming to have both a used fuel recovery system and Stable Salt Reactor in operation by the early 2030s, also at Point Lepreau.

Stream 3: A new class of micro-SMRs designed primarily to replace the use of diesel in remote communities and mines. Global First Power, a joint venture between OPG and Ultra Safe Nuclear Corporation, is proposing to build a 5 MW micro-SMR at the federally owned Chalk River Laboratories in Ontario, aiming for an in-service date of 2026.

SMRs are scalable and versatile nuclear reactors that typically produce 300 MW of electricity or less. They can support large established grids, small grids, remote off-grid communities and resource projects. The strategic plan says a 300-MW SMR could generate enough clean electricity each year to power 300,000 homes.

SMRs can provide stable baseload clean energy to complement renewable energy sources such as wind and solar while micro, or off-grid, SMRs can be used to displace diesel generation used in mining in remote areas, and heat and electricity generation in northern remote communities.

Prior Coverage on this blog: Canada’s SMR Developers Focus on Process Heat

# # #

Posted in Nuclear | Comments Off on Westinghouse Gets CAD27.2M for eVinci Micro Reactor

UK PM Boris Johnson Makes a Big Promise on Nuclear Energy. Can He Keep it?

Note to Readers

energoatom logoFor the latest news on nuclear energy issues in Ukraine sign up to receive the newsletter of the American Nuclear Society Rapid Response Taskforce

It has updates on the status of nuclear facilities impacted by the Russian invasion of Ukraine. Also, the International Atomic Energy Agency at is publishing periodic bulletins. For background see World Nuclear News – ” A Guide to Nuclear Power in Ukraine

  • UK PM Johnson Makes a Big Promise on Nuclear Energy. Can He Keep it?
  • UK Government and EDF Take Equity Stakes in Sizewell C
  • Bulgaria / Ministry Signs Deals To Support Key Energy Projects
  • China / Second Hualong One Reactor Begins Commercial Operation At Fuqing
  • New X-Ray Technique at INL Provides Novel Images Of Triso Nuclear Fuel
  • New Report “ESG Frameworks and Advanced Nuclear Energy” – NIA
  • U.S. Brings Criminal Indictments Against Three Russian FSB Officers for Hacking a US Nuclear Energy Plant

UK PM Johnson Makes a Big Promise on Nuclear Energy. Can He Keep it?

According to media reports, Johnson said he wants the UK to get 25% of its electricity from nuclear power, up from the current 16%. However, almost half of the country’s current nuclear generating capacity is due to be retired by 2025 and all but one of its reactors will retire by 2030.

The UK has overall from all sources 76 GWe of electrical generating capacity. A 25% target for nuclear energy would represent about 19 GWe which is the original target set for new nuclear energy generating capacity at least a decade ago by prior administrations.

UK nuclear projects

In effect, Johnson’s promise is not new. The question is whether, unlike his predecessors, he will be successful in organizing the huge financial commitment of a combination of government and investor financing to pay for it.

Several major projects have fallen by the wayside due to an inability by the project sponsors to attract a combination of government funding and sufficient investor confidence to proceed. The sites include a total of just over 9 GWe or 47% of Johnson’s goal.

  • Wlyfa & Oldbury (four 1350 MWe ABWRs),
  • Moorside (three 1150 MWe AP1000s) and
  • Bradwell (two 1000 MWe Hualong One)

The Bradwell site, which was supposed to be built by a Chinese state-owned nuclear energy enterprise, has all but been taken out of the running due to complaints by the UK government about “security concerns.” China inked the deal to build the reactors in return for equity stakes in the Hinkley Point and Sizewell projects.  EDF, which is building the four reactors, two at each site, is now scrambling to replace the Chinese financing with a combination of  western investors and government funding. It has a long way to go to raise the tens of billions in cash needed to build all found 1700 MWe reactors.

Current State of Play for New UK Nuclear Reactors

Currently, the UK has two 1720 MWe EDF EPRs under construction at the Hinkley Point C site and plans to build two similar units at the Sizewell C site for the total of about 7 GWe or about 37% of John’s goal.

Financing the Sizewell C project is still to be determined but an effort to use the RAB method, similar to CWIP used for the twin AP1000s being built at the Vogle site in Georgia in the US, is moving through the UK Parliament and is expected to pass. (Update: it passed)

Taken together, the 9 GWe of projects that have been mothballed and Sizewell C, the total capacity that needs financing comes to just over 12 GWe. At $6,500/Kw, the “overnight cost” in constant dollars would be $78 billion.

While the UK would not start all the construction at once, over a 20 year period the cost, in constant dollars, would work out to about $4 billion/year. Additional costs would come in for grid improvements for each new site.

Can Rolls Royce Build its Fleet of Mid-Range PWRs?

Another factor that could change the expected cost of keeping Johnson’s promise is the plan by Rolls Royce to build a fleet of 16 470 MWe mid-range PWR type reactors. The plants could be built in pairs at various sites which would add resilience to the overall electrical grid for the UK.

If all 16 plants are built by the early 2040s, the total capacity would be 7.5 GWE which is equal to the four EPRs being built at the Hinkley Point and Sizewell sites. Seen another way, the Rolls Royce fleet would easily equal the combination of the Wlyfa, Oldbury, and Moorside projects.

For its part, Rolls Royce says that its reactors would be assembled in part in a factory, and completed on site. Components would be manufactured for the most part by a UK supply chain which would cut costs along with the us of repeatable on-site construction processes.

The UK has been providing some financial assistance to Rolls Royce in the range of several hundred million pounds but major funding and investment commitments for the planned fleet of 16 units in the range of billions of  pounds is still in the future.

Johnson Meets the UK Nuclear Industry

As a kickoff to his plan for 19 GWe of new nuclear power, PM Johnson hosted a roundtable at Downing Street on March 21st with leaders from the nuclear industry to discuss how to improve domestic energy security and rapidly accelerate nuclear projects in the UK.

Johnson said nuclear energy needs to be a major part of the UK’s future energy system as a clean, reliable and safe energy source. He set out the government’s commitment to supporting the industry to develop a pipeline of future nuclear projects in the UK in a cost-effective way. He did not provide any details on how this objective will be met or what government commitments would be needed to support it.

Industry representatives set out the various technologies and projects they are developing, from larger nuclear power plants to small modular reactors, capitalizing on both British and international expertise. In addition to Rolls-Royce, several US and UK based developers of small modular reactors (SMRs) are working to enter the UK market.

UK Business Secretary Kwasi Kwarteng said, “I think if you look over the last 30 years, governments have taken quite short-term views and this is nowhere more apparent than in nuclear,”

Kwarteng also said in a video posted later on Twitter. “Our attitude to nuclear energy, frankly, I think has been woeful.”

Organizations who attended included: Nuclear Industry Association, Aviva Investors, Balfour Beatty, Bechtel Group Incorporated, EDF Energy, GE Hitachi Nuclear Energy, L&G, MACE, Nuclear Advanced Manufacturing Research Centre, Nuclear Power Jacobs, NuScale, Rolls Royce, Rothesay Life, Westinghouse Electric Company, Urenco and USS.

Tom Greatrex, chief executive of the Nuclear Industry Association said, “Accelerating nuclear projects is absolutely essential to keep energy costs down, cut expensive gas imports and strengthen our energy security as we move towards net-zero.”

“That means urgently investing in a fleet of large and small nuclear stations, alongside renewable investment, to deliver the clean, sovereign power we need.”

The roundtable comes ahead of the publication of the government’s Energy Security Strategy due later this month, with renewable energy, nuclear and domestic gas all a crucial part of achieving its aims.

Chancellor of the Duchy of Lancaster Steve Barclay and Exchequer Secretary to the Treasury Helen Whately also attended the industry roundtable.   (WNN contributed to this report)

UK Government and EDF Take Equity Stakes in Sizewell C

The BBC reported on Sunday March 27th that the UK government plans to take a 20% stake in a £20 billion large-scale nuclear plant at Sizewell C. French developer EDF will also take a 20% stake in the Suffolk power station. Taken together, the combined 40% stake is worth £8 billion,

In January, the UK government invested £100m in Sizewell C, with the aim of boosting investor confidence. This second push would take its investment up to £4bn, based on the estimated final project cost.

Government ministers are said to be hopeful that the establishment of two key investors will attract infrastructure investors and pension funds to take up the remaining 60%. A key confidence building measure by the government will be the passage of the RAB finance method for Sizewell C which is pending in Parliament.

The £20bn in capital (at current prices) is expected to be by equity – or cash up front – and the remainder in debt borrowed from financial markets.

Legislation allowing construction and financing costs to be added to customer bills, as Sizewell C is built over the next decade, is due for a second reading in the House of Commons next month. It made it through the Lords without changes and is expected to become law in the coming weeks having received strong support from MPs.

Nuclear industry experts say proposed reforms to EU-wide financial regulations (Solvency II) will make it easier for pension funds and insurance companies to invest in long-term infrastructure assets like nuclear.

The Sizewell C plant is composed of two pressurized water reactors (PWR) to be built by EDF and are expected to be rated at about 1700 MWe electrical each. It will be nearly identical to the Hinkley Point C project which is now under construction. Each plant is expected to provide 7% of total electricity needed in the UK once they enter revenue service.

Costs for both plants are expected to increase from the initial estimates due to demand for concrete, steel, and fabricated components including non-nuclear items like turbines and switchyard equipment.

& & &

Bulgaria / Ministry Signs Deals To Support Key Energy Projects, Including Nuclear Reactors and Fuel

(NucNet)  Bulgaria’s energy ministry has signed a memorandum of cooperation with US-based IP3 International and UKbased Gemcorp Capital Management to support the planning and implementation of clean energy projects, including the development of nuclear energy. The government said that the agreement could bring $1 Billion of investment to the country.

The ministry in a statement on the agreements, signed in the presence of Bulgarian prime minister Kiril Petkov, said the development of plans for the use and management of nuclear fuel is one of the “strategic” goals for the agreement.

Bulgaria has two Russia-made VVER-1000 pressurized water reactor units in commercial operation at Kozloduy. The two plants, inherited from the socialist era, provide about a third of the country’s electricity

Mr Petkov said Bulgaria is exploring potential suppliers of nuclear reactors and is starting a feasibility study as it pushes ahead with plans to cooperate with Greece on a shared nuclear power project that could help the two countries overcome their dependence on Russian natural gas.

map bulgaria

The two countries share a long common border  A new, second, overhead 400 kv electric line will soon connect Greece and Bulgaria. This new interconnection line between the substations Maritsa East in Bulgaria and Nea Santa in Greece will be  approximately 150 km (93 miles) long.

Other areas of cooperation include ensuring alternative gas supplies for Bulgaria, increasing regional energy security, and developing low-carbon projects to support the green energy transition.

About the Consulting Firms Helping Bulgaria

IP3 is Virginia-based nuclear technology company and consultancy. According to its website, it helps clients with “the development and operations of peaceful and secure nuclear power in the global marketplace.” London-based Gemcorp is an asset management firm specializes in energy and commodities investment on emerging markets.

Separately, in September 2021 IP3 a contract with ZE PAK, the largest private energy group in Poland, to provide consultancy on the implementation of its plans to deploy small modular reactor plants.

Bulgaria To Fast Track Plans To Build A New Nuclear Reactor

(Euractiv) The Bulgarian government plans to build at least one nuclear reactor at the Kozloduy nuclear power plant on the banks of the Danube.

“The Ministry of Energy has started a study for the rapid construction of another nuclear reactor, most likely in Kozloduy because this is a ready-made site with an environmental assessment and a working team,” said Deputy Prime Minister Asen Vassilev.

He said that if the project starts this year, the reactor will begin operating between 2028 and 2030. Vassilev explained that Bulgaria could build a second new nuclear reactor to have a total of four operating nuclear power units. Vassilev revealed two weeks ago that Greece is interested in buying electricity from a future new nuclear power plant in Bulgaria. Taken together the two plants, if built at 1000 MWe each, could cost at a minimum about $10-12 billion.

Given the current hostilities in Ukraine, Bulgaria government sources said it is out of the question to complete two partially built Rosatom VVERs at the Belene site.

Bulgaria And Greece Intensify Cooperation In The Energy Sector

(Balkan Green Energy News)  Government officials in Athens and Sofia are discussing prospects for a bilateral agreement on deliveries of nuclear power from Bulgaria to Greece.

Bulgarian prime minister Kiril Petkov told his Greek counterparts, “You need cheaper electricity. We have nuclear energy, and you don’t. By combining these two things, we can work together as good neighbors and build long-term relationships by constructing a mutually beneficial nuclear power plant as a vital alternative to address the energy deficit in our region.”

“We are considering potential suppliers and conducting a rapid study of the feasibility,” Petkov said, adding that he hopes that in 12 months his cabinet would have a clear picture about it and that a concrete proposal would follow.

Greek Prime Minister Kyriakos Mitsotakis said the country has no plans to build nuclear facilities because of the risk of earthquakes in the region. He added that Greece already imports electricity from Bulgaria, part of which comes from the Kozloduy nuclear power plant

The Greek government aims to conclude long-term bilateral contracts with Bulgaria that would ensure a stable supply of energy at very low prices and contribute to the competitiveness of the country’s economy.

& & &

China / Second Hualong One Reactor Begins Commercial Operation At Fuqing

(NucNet) Unit 6 of the Fuqing nuclear power station in Fujian province, southeastern China, began commercial operation on March 25th, owner China National Nuclear Corporation (CNNC) said.

Fuqing-6, a domestic Generation III Hualong One pressurized water reactor, becomes the second Hualong One design to begin commercial operation in China after its twin unit Fuqing-5 was first to begin commercial operation in February 2021. China has 10 other identical units under construction at 5 sites, plus overseas plants in Pakistan.

hualong one

Image: Ji Xing, Daiyong Song, Yuxiang Wu – (from PDF version of paper) Journal: Engineering. 2 (1). doi:10.1016/J.ENG.2016.01.017

The Hualong One, or HPR1000, is an indigenous 1,100 MW, three-loop pressurized water reactor. It incorporates elements of China National Nuclear Corporation’s ACP1000 and China General Nuclear’s ACPR1000+ reactor designs.

Construction of Fuqing-6 started in December 2015 and the unit achieved first criticality in December 2021, followed by full power in February 2022.

There are six units at the Fuqing site – four domestic CNP1000s and two Hualong One units. All are now commercially operational.

According the International Atomic Energy Agency, China has 10 other Hualong One units under construction domestically at five sites – two each at Zhangzhou, Taipingling, Fangchenggang, Changjiang and Sanaocun, also known as Zhejiang Sanao and San’ao.

China has two Hualong One nuclear plant projects overseas – Kanupp-2 and -3 near Karachi, Pakistan. Kanupp-2 began commercial operation in May 2021, while Kanupp-3 was connected to the national grid earlier this month.

& & &

New X-Ray Technique Provides Novel Images Of Triso Nuclear Fuel

(Eureaka Press Alerts/AAAS) For the first time researchers at Idaho National Laboratory have adapted a commercially available X-ray microscope to examine the internal structure of the uranium kernels inside irradiated TRi-structural ISOtropic particle fuel (TRISO) particles. The particles were irradiated for 560 days in INL’s Advanced Test Reactor.

triso fuel

This technological leap in nuclear fuel imaging can help researchers identify mechanisms of fuel degradation and collect data to inform computer models of nuclear fuels. That data helps companies develop and qualify fuels for their reactor designs.

(TRISO), consists of a kernel of uranium-based fuel surrounded by three layers of carbon- and ceramic-based materials chemically and structurally resistant to degradation in a reactor environment.

The resulting fuel particle is roughly the size of a poppy seed and can withstand temperatures of more than 3,000 degrees Fahrenheit, well beyond the threshold of current nuclear fuels, without melting or releasing significant quantities of fission products.

As more reactor companies look to TRISO particles to power their designs, understanding how these tiny fuel particles perform on the microscopic scale is vitally important.

In the past, researchers used X-rays to successfully examine the carbon and ceramic layers of TRISO fuel coatings. But high-quality X-ray images of the uranium kernel interior have been elusive.

The new method uses X-ray computed tomography, a technique that takes multiple 2D X-ray images of a specimen. A computer then assembles those 2D images into a 3D image for examination. (YouTube video)

The new technique allows researchers to image the entire TRISO particle nondestructively. They can then use destructive techniques such as optical microscopy or scanning electron microscopy to zoom in on interesting details.

The technique is also useful for examining fuel elements, where thousands of TRISO particles are embedded in a matrix material for insertion into a reactor. In the end, these models and data will help reactor developers qualify their fuels and navigate the regulatory process.

& & &

New Report “ESG Frameworks and Advanced Nuclear Energy” – NIA

nia esgThe Nuclear Innovation Alliance (NIA) released a new report, “ESG Frameworks and Advanced Nuclear Energy.” This new publication provides an introduction to Environmental, Social, and Governance (ESG) frameworks and how they may affect advanced nuclear energy technologies and projects.

It includes potential actions the nuclear industry and financial community should consider to promote consistent analytical treatment of nuclear energy within ESG frameworks and efficient access to capital for nuclear investments.

NIA Executive Director Judi Greenwald said the relevance of this work applies ongoing efforts to foster greater investment in advanced nuclear energy technologies:

“The underlying objective of ESG frameworks is to create interest in potential investments with positive ESG attributes, therefore improving access to and decreasing the cost of capital for those investments. Nuclear energy technologies are particularly affected by the inconsistent treatment of some frameworks regarding the ESG attributes of energy technologies.”

“With consistent, unbiased, and analytical frameworks, advanced nuclear energy would be evaluated as a zero-carbon energy source and potentially be treated similarly to other such sources. However, ESG frameworks have diverse origins, and some retain outdated or arbitrary approaches that exclude nuclear energy. As frameworks are standardized and embedded in policy, if their flaws are not addressed, advanced nuclear energy could be left at a disadvantage in terms of access to capital.”

The report is the latest in a series of studies in ways to address barriers to commercializing advanced nuclear energy technologies and to take advantage of opportunities to speed up commercialization of these designs. NIA also testifies before congress on these matters. The NIA’s mission is to bring economically competitive zero-carbon energy to the world by supporting entrepreneurialism and accelerated innovation and commercialization of advanced nuclear energy systems.

Prior Coverage on this blog

& & &

U.S. Brings Criminal Indictments Against Three Russian FSB Officers for Hacking Nuclear Energy Plant

hackers(DOJ/Wire Services) U.S. authorities have indicted three Russian intelligence officers on charges of hacking U.S. nuclear companies and other energy infrastructure for nearly six years.

The federal indictments, issued in 2021 but only unsealed on March 24,2022, were the latest in a series of accusations showing the scope and skill of Russia’s state-sponsored spies and hackers and their efforts to penetrate U.S. energy-related computer systems, private and public.

“Russian state-sponsored hackers pose a serious and persistent threat to critical infrastructure both in the United States and around the world,” Deputy Attorney General Lisa Monaco said in a statement announcing the indictments.

“Although the criminal charges unsealed today reflect past activity, they make crystal clear the urgent ongoing need for American businesses to harden their defenses and remain vigilant. Alongside our partners here at home and abroad, the Department of Justice is committed to exposing and holding accountable state-sponsored hackers who threaten our critical infrastructure with cyber-attacks.”

In the new indictments, U.S. authorities accuse the three officers from the FSB’s Center 16 of hacking hundreds of computers system from energy companies in the United States and other countries. According to the indictment, the three used spear phishing attacks that targeted more than 3,300 users at more than 500 U.S. and international companies. They also targeted U.S. government agencies such as the Nuclear Regulatory Commission.

The Wolf Creek nuclear plant in Kansas was one of the sites that was subjected to a cyber attack. Russian hackers breached business systems, but did not reach any safety related computers which are separated by design from the administrative side of the plant.

In a May 2017 cyberattack on Wolf Creek the Russian hackers compromised stored malware on the business network. They then harvested  employee credentials to aid in the efforts to compromise the network. The effort failed and Wolf Creek turned over forensic information to the FBI.

The Department of Homeland Security’s Cybersecurity and Infrastructure Security Agency (CISA) has already released numerous Technical Alerts, ICS Alerts and Malware Analysis Reports regarding Russia’s malign cyber activities, including the campaigns discussed in the indictments. These are located at:

# # #

Posted in Nuclear | 1 Comment